Li和Al掺杂的M (001)表面负载W3O9团簇的构型与电子结构

罗云清 邱美 杨伟 朱佳 李奕 黄昕 章永凡

引用本文: 罗云清, 邱美, 杨伟, 朱佳, 李奕, 黄昕, 章永凡. Li和Al掺杂的M (001)表面负载W3O9团簇的构型与电子结构[J]. 物理化学学报, 2014, 30(12): 2224-2232. doi: 10.3866/PKU.WHXB201410101 shu
Citation:  LUO Yun-Qing, QIU Mei, YANG Wei, ZHU Jia, LI Yi, HUANG Xin, ZHANG Yong-Fan. Configuration and Electronic Structure of W3O9 Clusters Supported on Li- and Al-Doped M (001) Surfaces[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2224-2232. doi: 10.3866/PKU.WHXB201410101 shu

Li和Al掺杂的M (001)表面负载W3O9团簇的构型与电子结构

  • 基金项目:

    国家自然科学基金(21373048, 21371034, 21403094) (21373048, 21371034, 21403094)

    福建省杰出青年科学基金(2013J06004) (2013J06004)

    江西省教育厅(GJJ14261)资助项目 (GJJ14261)

摘要:

采用基于第一性原理的分子动力学和量子力学相结合的方法, 对W3O9团簇在经Li 和Al 原子掺杂的M (001)表面的负载构型、稳定性以及体系的电子结构进行了系统研究. 结果表明, 当掺杂发生在表层时, 杂质原子的类型对W3O9团簇的负载构型有显著影响. 对于缺电子的Li 掺杂, 负载后W3O9团簇环状构型并不稳定, 转化为链状结构; 而Al 原子的掺杂则使得M (001)表面电子富余, 此时W3O9团簇存在平躺和垂直两种吸附方式, 二者能量稳定性相近, 其中前者存在同时与三个W原子成键的帽氧结构. 当掺杂发生在次表层时, 两种掺杂体系W3O9的负载构型相似, 团簇仍保持环状结构并倾向于采用垂直方式沉积在表面上. 与Li 掺杂体系相比, 富电子的Al 掺杂可显著增强W3O9与M (001)表面之间的结合能力, 负载后有较多电子从表面转移到团簇中特定的W原子上, 这将对W3O9团簇的催化性能产生显著影响.

English

    1. [1]

      (1) Lebarbier, V.; Clet, G.; Houalla, M. J. Phys. Chem. B 2006, 110, 22608. doi: 10.1021/jp064202e

      (1) Lebarbier, V.; Clet, G.; Houalla, M. J. Phys. Chem. B 2006, 110, 22608. doi: 10.1021/jp064202e

    2. [2]

      (2) Kim, Y. K.; Rousseau, R.; Kay, B. D.; White, J. M.; Dohnálek, K. J. Am. Chem. Soc. 2008, 130, 5059. doi: 10.1021/ja800730g(2) Kim, Y. K.; Rousseau, R.; Kay, B. D.; White, J. M.; Dohnálek, K. J. Am. Chem. Soc. 2008, 130, 5059. doi: 10.1021/ja800730g

    3. [3]

      (3) Li, S.; Li, Z.; Zhang, Z.; Kay, B. D.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. C 2012, 116, 908. doi: 10.1021/jp2093324(3) Li, S.; Li, Z.; Zhang, Z.; Kay, B. D.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. C 2012, 116, 908. doi: 10.1021/jp2093324

    4. [4]

      (4) Meijers, S.; Gielgens, L. H.; Ponec, V. J. Catal. 1995, 156, 147. doi: 10.1006/jcat.1995.1240(4) Meijers, S.; Gielgens, L. H.; Ponec, V. J. Catal. 1995, 156, 147. doi: 10.1006/jcat.1995.1240

    5. [5]

      (5) Yoshinaga, Y.; Kudo, M.; Hasegawa, S.; Okuhara, T. Appl. Surf. Sci. 1997, 121, 339.(5) Yoshinaga, Y.; Kudo, M.; Hasegawa, S.; Okuhara, T. Appl. Surf. Sci. 1997, 121, 339.

    6. [6]

      (6) Bondarchuk, O.; Huang, X.; Kim, J.; Kay, B. D.;Wang, L. S.; White, J. M.; Dohnálek, Z. Angew. Chem. Int. Edit. 2006, 45, 4786.(6) Bondarchuk, O.; Huang, X.; Kim, J.; Kay, B. D.;Wang, L. S.; White, J. M.; Dohnálek, Z. Angew. Chem. Int. Edit. 2006, 45, 4786.

    7. [7]

      (7) Li, Z. J.; Zhang, Z. R.; Kim, Y. K.; Smith, R. S.; Netzer, F.; Kay, B. D.; Rousseau, R.; Dohnalek, Z. J. Phys. Chem. C 2011, 115, 5773. doi: 10.1021/jp1108976(7) Li, Z. J.; Zhang, Z. R.; Kim, Y. K.; Smith, R. S.; Netzer, F.; Kay, B. D.; Rousseau, R.; Dohnalek, Z. J. Phys. Chem. C 2011, 115, 5773. doi: 10.1021/jp1108976

    8. [8]

      (8) Wagner, M.; Surnev, S.; Ramsey, M. G.; Barcaro, G.; Sementa, L.; Negreiros, F. R.; Fortunelli, A.; Dohnalek, Z.; Netzer, F. P. J. Phys. Chem. C 2011, 115, 23480. doi: 10.1021/jp208207e(8) Wagner, M.; Surnev, S.; Ramsey, M. G.; Barcaro, G.; Sementa, L.; Negreiros, F. R.; Fortunelli, A.; Dohnalek, Z.; Netzer, F. P. J. Phys. Chem. C 2011, 115, 23480. doi: 10.1021/jp208207e

    9. [9]

      (9) Zhu, J.; Lin, S.;Wen, X.; Fang, Z.; Li, Y.; Zhang, Y.; Huang, X.; Ning, L.; Ding, K.; Chen,W. J. Chem. Phys. 2013, 138, 34711. doi: 10.1063/1.4776219(9) Zhu, J.; Lin, S.;Wen, X.; Fang, Z.; Li, Y.; Zhang, Y.; Huang, X.; Ning, L.; Ding, K.; Chen,W. J. Chem. Phys. 2013, 138, 34711. doi: 10.1063/1.4776219

    10. [10]

      (10) Kwapien, K.; Paier, J.; Sauer, J. Angew. Chem. Int. Edit. 2014, 53, 8774. doi: 10.1002/anie.v53.33(10) Kwapien, K.; Paier, J.; Sauer, J. Angew. Chem. Int. Edit. 2014, 53, 8774. doi: 10.1002/anie.v53.33

    11. [11]

      (11) Myrach, P.; Nilius, N.; Levchenko, S. V.; nchar, A.; Risse, T.; Dinse, K.; Boatner, L. A.; Frandsen,W.; Horn, R.; Freund, H.; Schlögl, R.; Scheffler, M. ChemCatChem 2010, 2, 854. doi: 10.1002/cctc.201000083(11) Myrach, P.; Nilius, N.; Levchenko, S. V.; nchar, A.; Risse, T.; Dinse, K.; Boatner, L. A.; Frandsen,W.; Horn, R.; Freund, H.; Schlögl, R.; Scheffler, M. ChemCatChem 2010, 2, 854. doi: 10.1002/cctc.201000083

    12. [12]

      (12) Lintuluoto, M.; Nakamura, Y. J. Mol. Struct. 2004, 674, 207. doi: 10.1016/j.theochem.2003.12.051(12) Lintuluoto, M.; Nakamura, Y. J. Mol. Struct. 2004, 674, 207. doi: 10.1016/j.theochem.2003.12.051

    13. [13]

      (13) Scanlon, D. O.;Walsh, A.; Morgan, B. J.; Nolan, M.; Fearon, J.; Watson, G.W. J. Phys. Chem. C 2007, 111, 7971. doi: 10.1021/jp070200y(13) Scanlon, D. O.;Walsh, A.; Morgan, B. J.; Nolan, M.; Fearon, J.; Watson, G.W. J. Phys. Chem. C 2007, 111, 7971. doi: 10.1021/jp070200y

    14. [14]

      (14) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48(14) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48

    15. [15]

      (15) Ito, T.; Lunsford, J. H. Nature 1985, 314, 721.(15) Ito, T.; Lunsford, J. H. Nature 1985, 314, 721.

    16. [16]

      (16) Wu, M. C.; Truong, C. M.; odman, D.W. Phys. Rev. B 1992, 46, 12688. doi: 10.1103/PhysRevB.46.12688(16) Wu, M. C.; Truong, C. M.; odman, D.W. Phys. Rev. B 1992, 46, 12688. doi: 10.1103/PhysRevB.46.12688

    17. [17]

      (17) Hutchings, G. J.; Scurrell, M. S.;Woodhouse, J. R. J. Chem. Soc. Chem. Commun. 1989, 765.(17) Hutchings, G. J.; Scurrell, M. S.;Woodhouse, J. R. J. Chem. Soc. Chem. Commun. 1989, 765.

    18. [18]

      (18) Mammen, L.; Narasimhan, S.; de Gironcoli, S. J. Am. Chem. Soc. 2011, 133, 2801. doi: 10.1021/ja109663g(18) Mammen, L.; Narasimhan, S.; de Gironcoli, S. J. Am. Chem. Soc. 2011, 133, 2801. doi: 10.1021/ja109663g

    19. [19]

      (19) Xiao, J. T.; Li, J. J.; Yin, Y.; Lin, Z. L.; Qi, K. C.;Wang, X. J.; Cao, G. C. Adv. Mater. Res. 2013, 815, 673. doi: 10.4028/www.scientific.net/AMR.815(19) Xiao, J. T.; Li, J. J.; Yin, Y.; Lin, Z. L.; Qi, K. C.;Wang, X. J.; Cao, G. C. Adv. Mater. Res. 2013, 815, 673. doi: 10.4028/www.scientific.net/AMR.815

    20. [20]

      (20) Sarmadian, N.; Saniz, R.; Lamoen, D.; Partoens, B. Phys. Rev. B 2012, 86, 205129. doi: 10.1103/PhysRevB.86.205129(20) Sarmadian, N.; Saniz, R.; Lamoen, D.; Partoens, B. Phys. Rev. B 2012, 86, 205129. doi: 10.1103/PhysRevB.86.205129

    21. [21]

      (21) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2012, 116, 5781. doi: 10.1021/jp211363q(21) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2012, 116, 5781. doi: 10.1021/jp211363q

    22. [22]

      (22) Stavale, F.; Nilius, N.; Freund, H. J. New. J. Phys. 2012, 14, 033006. doi: 10.1088/1367-2630/14/3/033006(22) Stavale, F.; Nilius, N.; Freund, H. J. New. J. Phys. 2012, 14, 033006. doi: 10.1088/1367-2630/14/3/033006

    23. [23]

      (23) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2013, 117, 9943. doi: 10.1021/jp401983m(23) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2013, 117, 9943. doi: 10.1021/jp401983m

    24. [24]

      (24) Pozzo, M.; Alfe, D. Int. J. Hydrog. Energy 2009, 34, 1922. doi: 10.1016/j.ijhydene.2008.11.109(24) Pozzo, M.; Alfe, D. Int. J. Hydrog. Energy 2009, 34, 1922. doi: 10.1016/j.ijhydene.2008.11.109

    25. [25]

      (25) Pascual, J. L.; Savoini, B.; nzalez, R. Phys. Rev. B 2004, 70, 045109. doi: 10.1103/PhysRevB.70.045109(25) Pascual, J. L.; Savoini, B.; nzalez, R. Phys. Rev. B 2004, 70, 045109. doi: 10.1103/PhysRevB.70.045109

    26. [26]

      (26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671

    27. [27]

      (27) Kresse, G.; Joubert, J. Phys. Rev. B 1999, 59, 1758.(27) Kresse, G.; Joubert, J. Phys. Rev. B 1999, 59, 1758.

    28. [28]

      (28) Causa, M.; Dovesi, R.; Pisani, C.; Roetti, C. Surf. Sci. 1986, 175, 551. doi: 10.1016/0039-6028(86)90012-9(28) Causa, M.; Dovesi, R.; Pisani, C.; Roetti, C. Surf. Sci. 1986, 175, 551. doi: 10.1016/0039-6028(86)90012-9

    29. [29]

      (29) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953(29) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    30. [30]

      (30) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169(30) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    31. [31]

      (31) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0(31) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    32. [32]

      (32) Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334(32) Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334

    33. [33]

      (33) Zhu, J.; Jin, H.; Chen,W.; Li, Y.; Zhang, Y.; Ning, L.; Huang, X.; Ding, K.; Chen,W. J. Phys. Chem. C 2009, 113, 17509. doi: 10.1021/jp906194t(33) Zhu, J.; Jin, H.; Chen,W.; Li, Y.; Zhang, Y.; Ning, L.; Huang, X.; Ding, K.; Chen,W. J. Phys. Chem. C 2009, 113, 17509. doi: 10.1021/jp906194t

    34. [34]

      (34) Zhang, Y.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2007, 111, 7437.(34) Zhang, Y.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2007, 111, 7437.

    35. [35]

      (35) Maleknia, S.; Brodbelt, J.; Pope, K. J. Am. Soc. Mass Spectrom. 1991, 2, 212. doi: 10.1016/1044-0305(91)80046-A(35) Maleknia, S.; Brodbelt, J.; Pope, K. J. Am. Soc. Mass Spectrom. 1991, 2, 212. doi: 10.1016/1044-0305(91)80046-A

    36. [36]

      (36) Li, S.; Hennigan, J. M.; Dixon, D. A.; Peterson, K. A. J. Phys. Chem. A 2009, 113, 7861.(36) Li, S.; Hennigan, J. M.; Dixon, D. A.; Peterson, K. A. J. Phys. Chem. A 2009, 113, 7861.

    37. [37]

      (37) Huang, X.; Zhai, H. J.; Li, J.;Wang, L. S. J. Phys. Chem. A 2006, 110, 85.(37) Huang, X.; Zhai, H. J.; Li, J.;Wang, L. S. J. Phys. Chem. A 2006, 110, 85.

    38. [38]

      (38) Huang, X.; Zhai, H. J.; Kiran, B.;Wang, L. S. Angew. Chem. Int. Edit. 2005, 44, 7251.(38) Huang, X.; Zhai, H. J.; Kiran, B.;Wang, L. S. Angew. Chem. Int. Edit. 2005, 44, 7251.

    39. [39]

      (39) Zhu, J.; Giordano, L.; Lin, S.; Fang, Z.; Li, Y.; Huang, X.; Zhang, Y.; Pacchioni, G. J. Phys. Chem. C. 2012, 116, 17668. doi: 10.1021/jp3051609(39) Zhu, J.; Giordano, L.; Lin, S.; Fang, Z.; Li, Y.; Huang, X.; Zhang, Y.; Pacchioni, G. J. Phys. Chem. C. 2012, 116, 17668. doi: 10.1021/jp3051609

    40. [40]

      (40) Di Valentin, C.; Rosa, M.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 14086. doi: 10.1021/ja304661g

      (40) Di Valentin, C.; Rosa, M.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 14086. doi: 10.1021/ja304661g

  • 加载中
计量
  • PDF下载量:  510
  • 文章访问数:  843
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2014-11-27
  • 收稿日期:  2014-07-28
  • 网络出版日期:  2014-10-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章