Citation: TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 781-788. doi: 10.3866/PKU.WHXB201402191
ZnO掺杂的SnO2纳米纤维的制备、表征及气敏机理
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维. 为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO 复合材料. 利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征. 制备的SnO2/ZnO 复合材料是由纳米量级的小颗粒构成的分级结构材料. ZnO含量不同,对应的SnO2/ZnO复合材料结构不同. 表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用. 将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件. 讨论了SnO2/ZnO复合材料气敏元件的敏感机理. 同时针对Sn:Zn 摩尔比为1:1 时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.
English
Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers
SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ·2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced SnO2 nanofibers were fabricated by electrospinning, using SnCl2 ?2H2O as the raw material. The influences of ZnO doping on the morphologies, structures, and compositions of the SnO2 nanofibers were studied by introducing different amounts of ZnO into the SnO2. The crystallography and microstructures of the synthesized SnO2/ZnO composite nanofibers with different molar ratios of Sn to Zn were investigated using thermogravimetric/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The obtained SnO2/ZnO composite nanofibers with different ZnO contents had hollow hierarchical structures composed of nanocrystals. Different amounts of ZnO gave different structures. The characterization results showed that the introduction of ZnO into SnO2 played an important role in the SnO2 nanofiber structure. The gas sensing properties of sensors based on different ZnO-doped SnO2 nanofibers were tested. The results indicated that the methanol-sensing performance of the sensor containing SnO2/ZnO in a molar ratio of 1:1 was better than those of the others. The sensing mechanisms of ZnO-doped SnO2 nanofibers were examined in detail. Possible reasons for the enhanced
-
Key words:
-
Electrospinning
- / Composite nanofiber
- / Gas sensor
- / Methanol
- / Heterojunction
-
-
[1]
(1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z
(1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z
-
[2]
(2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701(2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701
-
[3]
(3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55(3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55
-
[4]
(4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932(4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932
-
[5]
(5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9(5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9
-
[6]
(6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6(6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6
-
[7]
(7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2.(7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2.
-
[8]
(8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786(8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786
-
[9]
(9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a(9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a
-
[10]
(10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688(10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688
-
[11]
(11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040(11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040
-
[12]
(12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087(12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087
-
[13]
(13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281(13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281
-
[14]
(14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.](14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.]
-
[15]
(15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a(15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a
-
[16]
(16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647(16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647
-
[17]
(17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695.(17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695.
-
[18]
(18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131.(18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131.
-
[19]
(19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609(19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609
-
[20]
(20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553(20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553
-
[21]
(21) Guan, H.; Shao, C.; Chen, B.; ng, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021(21) Guan, H.; Shao, C.; Chen, B.; ng, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021
-
[22]
(22) Yang, X.; Shao, C.; Guan, H.; Li, X.; ng, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035(22) Yang, X.; Shao, C.; Guan, H.; Li, X.; ng, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035
-
[23]
(23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030(23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030
-
[24]
(24) Wang, Y.; Ramos, I.; Santia -Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045(24) Wang, Y.; Ramos, I.; Santia -Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045
-
[25]
(25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091(25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091
-
[26]
(26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006(26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006
-
[27]
(27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508(27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508
-
[28]
(28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026(28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026
-
[29]
(29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210.(29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210.
-
[30]
(30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038(30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038
-
[31]
(31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435(31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435
-
[32]
(32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373(32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
-
[33]
(33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070(33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
-
[34]
(34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501(34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
-
[35]
(35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603(35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
-
[36]
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
-
[37]
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
-
[38]
(38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4(38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
-
[39]
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
-
[40]
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
-
[41]
(41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9(41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
-
[42]
(42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.(42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
-
[43]
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
-
[44]
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
-
[45]
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.](45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.]
-
[46]
(46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031(46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
-
[47]
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
-
[48]
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373
-
[49]
(33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070(33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
-
[50]
(34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501(34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501
-
[51]
(35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603(35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603
-
[52]
(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004(36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004
-
[53]
(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q(37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q
-
[54]
(38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4(38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4
-
[55]
(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006(39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; ng, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006
-
[56]
(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095(40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
-
[57]
(41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9(41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9
-
[58]
(42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.(42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446.
-
[59]
(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452(43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452
-
[60]
(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X(44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X
-
[61]
(45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.](45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.]
-
[62]
(46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031(46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031
-
[63]
(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p(47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p
-
[64]
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983
(48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 629
- 文章访问数: 992
- HTML全文浏览量: 3

下载: