过生长法制备准凹面体状Pt-Ni纳米合金及其甲醇氧化电催化性能

王纯 康建新 王利利 陈庭文 李杰 张东凤 郭林

引用本文: 王纯, 康建新, 王利利, 陈庭文, 李杰, 张东凤, 郭林. 过生长法制备准凹面体状Pt-Ni纳米合金及其甲醇氧化电催化性能[J]. 物理化学学报, 2014, 30(4): 708-714. doi: 10.3866/PKU.WHXB201401222 shu
Citation:  WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 708-714. doi: 10.3866/PKU.WHXB201401222 shu

过生长法制备准凹面体状Pt-Ni纳米合金及其甲醇氧化电催化性能

  • 基金项目:

    国家自然科学基金(21173015) 

    国家重点基础研究发展规划项目(973)(2010CB934700)资助 

摘要:

通过溶剂热法,成功制备了准凹面体状Pt-Ni合金纳米结构. 不同角度的透射电镜照片和三维模型图表明,准凹面体与以立方八面体为基底,在其十二个顶点进行外延生长所形成的结构相对应. 高分辨电镜(HRTEM),选区电子衍射(SAED)和X射线粉末衍射(XRD)表征结果表明,外延部分与内核部分组成成分不同. 在进行系统对照实验的基础上提出了同步刻蚀-过生长机理来解释准凹面体的形成过程. 电化学测试表明,准凹面体对甲醇氧化具有很高的催化活性,按质量归一的催化活性是相同条件下制备所得纯Pt 颗粒的3 倍,是商用Pt/C 的13.6倍. X射线光电子能谱数据表明,Ni 的引入有效降低了Pt 的原子结合能,这可能对催化活性的提高起到了关键作用.

English

    1. [1]

      (1) Zhang, H.; Jin, M. S.; Xia, Y. N. Chem. Soc. Rev. 2012, 41, 8035. doi: 10.1039/c2cs35173k

      (1) Zhang, H.; Jin, M. S.; Xia, Y. N. Chem. Soc. Rev. 2012, 41, 8035. doi: 10.1039/c2cs35173k

    2. [2]

      (2) Peng, Z. M.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010(2) Peng, Z. M.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010

    3. [3]

      (3) Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.(3) Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.

    4. [4]

      (4) Debe1, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115(4) Debe1, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

    5. [5]

      (5) Gu, J.; Zhang, Y. W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050. doi: 10.1039/c2cs35184f(5) Gu, J.; Zhang, Y. W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050. doi: 10.1039/c2cs35184f

    6. [6]

      (6) Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P.; Tsang, S. C. ACS Nano. 2008, 2, 2547. doi: 10.1021/nn800400u(6) Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P.; Tsang, S. C. ACS Nano. 2008, 2, 2547. doi: 10.1021/nn800400u

    7. [7]

      (7) Zhou, X. W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文,甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031(7) Zhou, X. W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文,甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031

    8. [8]

      (8) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 20, 436.] doi: 10.3866/PKU.WHXB20040423(8) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 20, 436.] doi: 10.3866/PKU.WHXB20040423

    9. [9]

      (9) Nøskov, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937. doi: 10.1073/pnas.1006652108(9) Nøskov, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 937. doi: 10.1073/pnas.1006652108

    10. [10]

      (10) Kelly, T. G.; Chen, J. G.; Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j(10) Kelly, T. G.; Chen, J. G.; Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j

    11. [11]

      (11) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater. 2008, 7, 333. doi: 10.1038/nmat2156(11) Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nat. Mater. 2008, 7, 333. doi: 10.1038/nmat2156

    12. [12]

      (12) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418. doi: 10.1021/ja101108w(12) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418. doi: 10.1021/ja101108w

    13. [13]

      (13) Zhang, L. J.; Xia, D. G.; Wang, Z. Y.; Yuan, R.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 287. [张丽娟, 夏定国, 王振尧, 袁嵘, 吴自玉. 物理化学学报, 2005, 21, 287.] doi: 10.3866/PKU.WHXB20050312(13) Zhang, L. J.; Xia, D. G.; Wang, Z. Y.; Yuan, R.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2005, 21, 287. [张丽娟, 夏定国, 王振尧, 袁嵘, 吴自玉. 物理化学学报, 2005, 21, 287.] doi: 10.3866/PKU.WHXB20050312

    14. [14]

      (14) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941(14) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941

    15. [15]

      (15) Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang,Y. Y.; Jiang, Z.;Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133, 1978 doi: 10.1021/ja109483a(15) Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang,Y. Y.; Jiang, Z.;Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133, 1978 doi: 10.1021/ja109483a

    16. [16]

      (16) Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p(16) Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p

    17. [17]

      (17) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z(17) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z

    18. [18]

      (18) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y(18) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y

    19. [19]

      (19) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755(19) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755

    20. [20]

      (20) Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.v25.21(20) Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.v25.21

    21. [21]

      (21) Li, J. H.; Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Yang, S. H. J. Am. Chem. Soc. 2009, 131, 2959. doi: 10.1021/ja808784s(21) Li, J. H.; Zhou, W.; Yao, M.; Guo, L.; Li, Y. M.; Yang, S. H. J. Am. Chem. Soc. 2009, 131, 2959. doi: 10.1021/ja808784s

    22. [22]

      (22) Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405. doi: 10.1021/nl100222k(22) Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405. doi: 10.1021/nl100222k

    23. [23]

      (23) Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e(23) Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e

    24. [24]

      (24) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 132, 268. doi: 10.1021/ja906954f(24) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 132, 268. doi: 10.1021/ja906954f

    25. [25]

      (25) Xia, X.; Zeng, J.; Mcdearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542. doi: 10.1002/anie.201105200(25) Xia, X.; Zeng, J.; Mcdearmon, B.; Zheng, Y.; Li, Q.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 12542. doi: 10.1002/anie.201105200

    26. [26]

      (26) Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Nano Res. 2011, 4, 612. doi: 10.1007/s12274-011-0117-x(26) Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Nano Res. 2011, 4, 612. doi: 10.1007/s12274-011-0117-x

    27. [27]

      (27) Wu, H. L.; Chen, C. H.; Huang, M. H. Chem. Mater. 2009, 21, 110. doi: 10.1021/cm802257e(27) Wu, H. L.; Chen, C. H.; Huang, M. H. Chem. Mater. 2009, 21, 110. doi: 10.1021/cm802257e

    28. [28]

      (28) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409(28) Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409

    29. [29]

      (29) Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 7850. doi: 10.1002/anie.v50.34(29) Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 7850. doi: 10.1002/anie.v50.34

    30. [30]

      (30) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688(30) Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688

    31. [31]

      (31) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 2773. doi: 10.1002/anie.201007859(31) Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Edit. 2011, 50, 2773. doi: 10.1002/anie.201007859

    32. [32]

      (32) Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J. E.; Yu, T. K.; Yang, D. R.; Xia, Y. Nano Lett. 2011, 11, 898. doi: 10.1021/nl104347j(32) Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J. E.; Yu, T. K.; Yang, D. R.; Xia, Y. Nano Lett. 2011, 11, 898. doi: 10.1021/nl104347j

    33. [33]

      (33) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y. Angew. Chem. Int. Edit. 2010, 49, 5296. doi: 10.1002/anie.v49:31(33) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y. Angew. Chem. Int. Edit. 2010, 49, 5296. doi: 10.1002/anie.v49:31

    34. [34]

      (34) Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555. doi: 10.1039/b307040a(34) Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555. doi: 10.1039/b307040a

    35. [35]

      (35) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248(35) Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    36. [36]

      (36) Zhang, H.; Jin, M. S.; Xia, Y. N. Angew. Chem. Int. Edit. 2012, 51, 7656. doi: 10.1002/anie.201201557(36) Zhang, H.; Jin, M. S.; Xia, Y. N. Angew. Chem. Int. Edit. 2012, 51, 7656. doi: 10.1002/anie.201201557

    37. [37]

      (37) Nigg, H. L.; Ford, L. P.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 3064.(37) Nigg, H. L.; Ford, L. P.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 3064.

    38. [38]

      (38) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 2581.(38) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. 1998, A16, 2581.

    39. [39]

      (39) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun. G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755(39) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun. G. Q. J. Phys. Chem. C 2010, 114, 19714. doi: 10.1021/jp1039755

    40. [40]

      (40) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B. 2003, 107, 24.(40) Park, K. W.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B. 2003, 107, 24.

    41. [41]

      (41) Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. J. Mater. Chem. 2011, 21, 1925. doi: 10.1039/c0jm02563a(41) Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. J. Mater. Chem. 2011, 21, 1925. doi: 10.1039/c0jm02563a

    42. [42]

      (42) Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j

      (42) Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j

  • 加载中
计量
  • PDF下载量:  1106
  • 文章访问数:  1042
  • HTML全文浏览量:  53
文章相关
  • 发布日期:  2014-03-31
  • 收稿日期:  2013-12-03
  • 网络出版日期:  2014-01-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章