Citation: TU Zhe-Yan, YANG Dong-Dong, WANG Fan, LI Xiang-Yuan. A CCSD(T) Study on Structures and Harmonic Frequencies of the Isoelectronic Uranium Triatomic Species OUO2+, NUN and NUO+[J]. Acta Physico-Chimica Sinica, 2012, 28(07): 1707-1713. doi: 10.3866/PKU.WHXB201205111
等电子三原子铀化物OUO2+、NUN和NUO+的结构和谐振频率的CCSD(T)计算研究
用小核相对论有效势和CCSD(T)方法计算了三原子铀化物OUO2+, NUN和NUO+的平衡键长和谐振频率. 计算结果显示U原子内层5s5p5d 电子相关能对这些化合物性质的影响非常小. 除NUN的弯曲振动频率,旋轨耦合效应对这些化合物的结构和频率的影响并不明显. 本文的计算结果与其他研究组的计算结果以及已有的实验值相比符合较好, 这表明作为单参考态方法, CCSD(T)能够对这些体系的键长和频率给出较精确的计算结果. 与此前密度泛函理论(DFT)的计算结果相比, CCSD(T)方法与PBE0泛函的结果吻合最好. 本文的工作有助于在用密度泛函方法研究这些体系时选择合适的交换相关泛函, 也为今后的实验研究提供了新的理论数据.
English
A CCSD(T) Study on Structures and Harmonic Frequencies of the Isoelectronic Uranium Triatomic Species OUO2+, NUN and NUO+
CCSD(T) calculations with small-core relativistic effective core potentials for equilibrium bond lengths and harmonic frequencies are presented for uranium triatomic OUO2+, NUN, and NUO+ species. The inner shell electron correlation of the U atom has almost no effect on the properties of these species, and the spin-orbit coupling only has a small effect, except in the bending mode of NUN. Our results agree reasonably well with previous theoretical results and the available experimental data, which indicates that the single-reference CCSD(T) method can be employed to study these species. Compared with previous results, the CCSD(T) results agree best with density functional theory (DFT) calculations performed using the PBE0 functional. The present work provides new estimates which are useful for future experimental work and for choosing proper exchange-correlation functionals in DFT calculations for these species.
-
Key words:
-
Uranium species
- / Coupled cluster theory
- / Spin-orbit coupling
-
-
[1]
(1) Gabelnick, D.; Reedy, G. T.; Chasanov, M. G. J. Chem. Phys.1973, 58, 4468. doi: 10.1063/1.1679009
(1) Gabelnick, D.; Reedy, G. T.; Chasanov, M. G. J. Chem. Phys.1973, 58, 4468. doi: 10.1063/1.1679009
-
[2]
(2) Green, D.W.; Reedy, G. T. J. Chem. Phys. 1976, 65, 2921. doi: 10.1063/1.433406(2) Green, D.W.; Reedy, G. T. J. Chem. Phys. 1976, 65, 2921. doi: 10.1063/1.433406
-
[3]
(3) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1993, 98, 3690. doi: 10.1063/1.464045(3) Hunt, R. D.; Andrews, L. J. Chem. Phys. 1993, 98, 3690. doi: 10.1063/1.464045
-
[4]
(4) Hunt, R. D.; Yustein, J. T.; Andrews, L. J. Chem. Phys. 1993,98, 6070. doi: 10.1063/1.464845(4) Hunt, R. D.; Yustein, J. T.; Andrews, L. J. Chem. Phys. 1993,98, 6070. doi: 10.1063/1.464845
-
[5]
(5) Pyykkö, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006(5) Pyykkö, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006
-
[6]
(6) Pepper, M.; Bursten, B. E. Chem. Rev. 1991, 91, 719. doi: 10.1021/cr00005a005(6) Pepper, M.; Bursten, B. E. Chem. Rev. 1991, 91, 719. doi: 10.1021/cr00005a005
-
[7]
(7) Cornehl, H. H.; Heinemann, C.; Marcalo, J.; de Matos, A. P.;Schwarz, H. Angew. Chem. Int. Edit. 1996, 35, 891. doi: 10.1002/anie.199608911(7) Cornehl, H. H.; Heinemann, C.; Marcalo, J.; de Matos, A. P.;Schwarz, H. Angew. Chem. Int. Edit. 1996, 35, 891. doi: 10.1002/anie.199608911
-
[8]
(8) Zhou, M.; Andrews, L. J. Chem. Phys. 1996, 111, 11044.(8) Zhou, M.; Andrews, L. J. Chem. Phys. 1996, 111, 11044.
-
[9]
(9) Dolg, M. Effective Core Potentials. In Modern Methods and Al rithms of Quantum Chemistry; Grotendorst, J. Ed.; JohnNeumann Institute for Computing: Jülich, 2000; Vol. 3, p 507.(9) Dolg, M. Effective Core Potentials. In Modern Methods and Al rithms of Quantum Chemistry; Grotendorst, J. Ed.; JohnNeumann Institute for Computing: Jülich, 2000; Vol. 3, p 507.
-
[10]
(10) Pyykkö, P.; Li, J.; Runeberg, N. J. Phys. Chem. 1994, 98, 4809.doi: 10.1021/j100069a007(10) Pyykkö, P.; Li, J.; Runeberg, N. J. Phys. Chem. 1994, 98, 4809.doi: 10.1021/j100069a007
-
[11]
(11) Gagliardi, L.; Roos, B. O. Chem. Phys. Lett. 2000, 331, 229.doi: 10.1016/S0009-2614(00)01218-5(11) Gagliardi, L.; Roos, B. O. Chem. Phys. Lett. 2000, 331, 229.doi: 10.1016/S0009-2614(00)01218-5
-
[12]
(12) de Jong,W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A.Theor. Chem. Acc. 2001, 107, 22. doi: 10.1007/s002140100293(12) de Jong,W. A.; Harrison, R. J.; Nichols, J. A.; Dixon, D. A.Theor. Chem. Acc. 2001, 107, 22. doi: 10.1007/s002140100293
-
[13]
(13) Wang, H. Y.; Chen, C. A.; Sun, Y.; Zhu, Z. H. Acta Phys. -Chim. Sin. 2003, 19, 651. [王红艳, 陈长安, 孙颖, 朱正和. 物理化学学报, 2003, 19, 651.] doi: 10.3866/PKU.WHXB20030717(13) Wang, H. Y.; Chen, C. A.; Sun, Y.; Zhu, Z. H. Acta Phys. -Chim. Sin. 2003, 19, 651. [王红艳, 陈长安, 孙颖, 朱正和. 物理化学学报, 2003, 19, 651.] doi: 10.3866/PKU.WHXB20030717
-
[14]
(14) Clavaguéra-Sarrio, C.; Ismail, N.; Marsden, C. J.; Bégué, D.;Pouchan, C. Chem. Phys. 2004, 302, 1. doi: 10.1016/j.chemphys.2004.03.011(14) Clavaguéra-Sarrio, C.; Ismail, N.; Marsden, C. J.; Bégué, D.;Pouchan, C. Chem. Phys. 2004, 302, 1. doi: 10.1016/j.chemphys.2004.03.011
-
[15]
(15) Czek, J. J. Chem. Phys. 1966, 45, 4256. doi: 10.1063/1.1727484(15) Czek, J. J. Chem. Phys. 1966, 45, 4256. doi: 10.1063/1.1727484
-
[16]
(16) Jackson, V. E.; Craciun, R.; Dixon, D. A.; Peterson, K. A.; deJong,W. A. J. Phys. Chem. A 2008, 112, 4095. doi: 10.1021/jp710334b(16) Jackson, V. E.; Craciun, R.; Dixon, D. A.; Peterson, K. A.; deJong,W. A. J. Phys. Chem. A 2008, 112, 4095. doi: 10.1021/jp710334b
-
[17]
(17) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. withcontributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.;Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T.C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.;Matthews, D. A.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.;Price, D. R.; Prochnow E.; Puzzarini, C.; Ruud, K.; Schiffmann,F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packages MOLECULE (Almlöf, J. and Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P. and Olsen, J.), andECP routines by Mitin, A. V. and vanWüllen, C.; CFOUR,Version1.2; For the current version, see http://www.cfour.de.(17) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G. withcontributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.;Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.;Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T.C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.;Matthews, D. A.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.;Price, D. R.; Prochnow E.; Puzzarini, C.; Ruud, K.; Schiffmann,F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packages MOLECULE (Almlöf, J. and Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P. and Olsen, J.), andECP routines by Mitin, A. V. and vanWüllen, C.; CFOUR,Version1.2; For the current version, see http://www.cfour.de.
-
[18]
(18) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129,064113. doi: 10.1063/1.2968136(18) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129,064113. doi: 10.1063/1.2968136
-
[19]
(19) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010(19) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010
-
[20]
(20) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954(20) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954
-
[21]
(21) Kuechle,W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys.1994, 100, 7535. doi: 10.1063/1.466847(21) Kuechle,W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys.1994, 100, 7535. doi: 10.1063/1.466847
-
[22]
(22) Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487. doi: 10.1063/1.1521431(22) Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487. doi: 10.1063/1.1521431
-
[23]
(23) Cao, X.; Dolg, M. J. Mol. Struct. -Theochem 2004, 673, 203.doi: 10.1016/j.theochem.2003.12.015(23) Cao, X.; Dolg, M. J. Mol. Struct. -Theochem 2004, 673, 203.doi: 10.1016/j.theochem.2003.12.015
-
[24]
(24) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.1992, 96, 6796. doi: 10.1063/1.462569(24) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.1992, 96, 6796. doi: 10.1063/1.462569
-
[25]
(25) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; FonsecaGuerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.J. Comput. Chem. 2001, 22, 931. doi: 10.1002/jcc.1056(25) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; FonsecaGuerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.J. Comput. Chem. 2001, 22, 931. doi: 10.1002/jcc.1056
-
[26]
(26) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098(26) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[27]
(27) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822(27) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
-
[28]
(28) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. Symp. 1989, 23,199.(28) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. Symp. 1989, 23,199.
-
[29]
(29) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001(29) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
-
[30]
(30) Grimme, S. J. Comput. Chem. 2004, 25, 1463. doi: 10.1002/jcc.20078(30) Grimme, S. J. Comput. Chem. 2004, 25, 1463. doi: 10.1002/jcc.20078
-
[31]
(31) Ernzerhof, M.; Scuseria, G. J. Chem. Phys. 1999, 110, 5029.doi: 10.1063/1.478401(31) Ernzerhof, M.; Scuseria, G. J. Chem. Phys. 1999, 110, 5029.doi: 10.1063/1.478401
-
[32]
(32) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Peterson, M. R.; Sing, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46,6671. doi: 10.1103/PhysRevB.46.6671
(32) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Peterson, M. R.; Sing, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46,6671. doi: 10.1103/PhysRevB.46.6671
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 607
- 文章访问数: 1789
- HTML全文浏览量: 8

下载: