Citation: XIAO Lixin, DUAN Laiqiang, CHAI Junyi, WANG Yun, CHEN Zhijian, QU Bo, NG Qihuang. Fabrication of Large Area of Anodic Aluminum Oxide Ultrathin Film Directly onto an ITO Electrode with a Ti Buffer Layer[J]. Acta Physico-Chimica Sinica, 2011, 27(03): 749-753. doi: 10.3866/PKU.WHXB20110310
利用钛保护层在ITO电极上直接制备大面积的超薄氧化铝膜
通过磁控溅射并引入钛保护层, 利用在0.3 mol·L-1硫酸中20 V电压下二次阳极氧化, 在氧化铟锡(ITO)导电玻璃衬底上直接制备了超薄(约140 nm, 为阳极氧化前Al厚度的一半)、大面积(约4 cm2)的多孔阳极氧化铝(AAO). 扫描电子显微镜结果表明生成的微孔与衬底垂直, 孔径和孔间距分别约为30和60 nm. 我们发现钛保护层的作用是提高了Al层的附着性并且防止ITO被腐蚀, 在此体系中钛不能被其它的金属如铬、金、银或铜代替. 紫外-可见光谱透过率结果显示在阳极氧化过程中Ti被氧化成为透明的TiO2, 利用10-20 nm的钛保护层以及二次阳极氧化过程, 能够保证高透明度. 在ITO上直接制备的这种透明、有序的AAO纳米结构在光子学、光伏领域和纳米制备等方面具有潜在应用.
English
Fabrication of Large Area of Anodic Aluminum Oxide Ultrathin Film Directly onto an ITO Electrode with a Ti Buffer Layer
An anodic aluminum oxide (AAO) ultrathin film (~140 nm, about half the thickness of the original Al film) was successfully fabricated directly onto an indium tin oxide (ITO) electrode without the erosion of ITO by a two-step anodization process in 0.3 mol·L-1 O2SO4 solution at a constant voltage of 20 V. Here, a thin titanium buffer layer was included between the ITO electrode and the Al film by radio frequency (RF) magnetron sputtering. A large area (about 4 cm2) of porous alumina with nanoscaled channels perpendicular to the substrates was obtained. The average pore diameter and the pore interspace were approximately 30 and 60 nm, respectively. We found that the Ti buffer layer with a thickness of 10-40 nm between the Al layer and the ITO substrate played a critical role in improving the adhesion and ensuring ITO protection, which could not be duplicated by other metals, e.g., Cr, Au, Ag, and Cu. UV-visible transmittance spectra confirmed that the Ti buffer layer was oxidized and became transparent TiO2 and that 10-20 nm of the Ti buffer layer together with the two-step anodization process is suitable for high transparency. Therefore, the AAO specimen possessing a high nanoscale regularity and transparency may have potential use in photonics, photovoltaics, and nanofabrications.
-
-
[1]
(1) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.
(1) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.
-
[2]
(2) Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.(2) Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.
-
[3]
(3) Guo, Y. Y.; Wang, M.; Mao, X. B.; Jiang, Y. X.; Wang, C.; Yang, Y. L. Acta Phys. -Chim. Sin. 2010, 26, 203.(3) Guo, Y. Y.; Wang, M.; Mao, X. B.; Jiang, Y. X.; Wang, C.; Yang, Y. L. Acta Phys. -Chim. Sin. 2010, 26, 203.
-
[4]
[郭元元, 汪 明, 毛晓波, 蒋月秀, 王 琛, 杨延莲. 物理化学学报, 2010, 26, 203.][郭元元, 汪 明, 毛晓波, 蒋月秀, 王 琛, 杨延莲. 物理化学学报, 2010, 26, 203.]
-
[5]
(4) Yanagishita, T.; Sasaki, M.; Nishio, K.; Masuda, H. Adv. Mater. 2004, 16, 429.(4) Yanagishita, T.; Sasaki, M.; Nishio, K.; Masuda, H. Adv. Mater. 2004, 16, 429.
-
[6]
(5) Johansson, A.; Widenkvist, E.; Lu, J.; Boman, M.; Jansson, U. Nano Lett. 2005, 5, 1603.(5) Johansson, A.; Widenkvist, E.; Lu, J.; Boman, M.; Jansson, U. Nano Lett. 2005, 5, 1603.
-
[7]
(6) Shukla, S.; Kim, K. T.; Baev, A.; Yoon, Y. K.; Litchinitser, N. M.; Prasad, P. N. Nano Lett. 2010, 4, 2249.(6) Shukla, S.; Kim, K. T.; Baev, A.; Yoon, Y. K.; Litchinitser, N. M.; Prasad, P. N. Nano Lett. 2010, 4, 2249.
-
[8]
(7) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023.(7) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023.
-
[9]
(8) Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Nat. Mater. 2006, 5, 741.(8) Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Nat. Mater. 2006, 5, 741.
-
[10]
(9) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.(9) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
-
[11]
(10) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.(10) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.
-
[12]
(11) Hobbs, K. L.; Larson, P. R.; Lian, G. D.; Keay J. C.; Johnson, M. B. Nano Lett. 2004, 4, 167.(11) Hobbs, K. L.; Larson, P. R.; Lian, G. D.; Keay J. C.; Johnson, M. B. Nano Lett. 2004, 4, 167.
-
[13]
(12) Sander, M. S.; Tan, L. S. Adv. Funct. Mater. 2003, 13, 393.(12) Sander, M. S.; Tan, L. S. Adv. Funct. Mater. 2003, 13, 393.
-
[14]
(13) Tian, M. L.; Xu, S. Y.; Wang, J. G.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Nano Lett. 2005, 5, 697.(13) Tian, M. L.; Xu, S. Y.; Wang, J. G.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Nano Lett. 2005, 5, 697.
-
[15]
(14) Teh, L. K.; Furin, V.; Martucci, A.; Guglielmi, M.; Wong, C. C.; Romanato, F. Thin Solid Films 2007, 515, 5787.(14) Teh, L. K.; Furin, V.; Martucci, A.; Guglielmi, M.; Wong, C. C.; Romanato, F. Thin Solid Films 2007, 515, 5787.
-
[16]
(15) Chuang, L. M.; Fu, H. K.; Chen, Y. F. Appl. Phys. Lett. 2005, 86, 061902.(15) Chuang, L. M.; Fu, H. K.; Chen, Y. F. Appl. Phys. Lett. 2005, 86, 061902.
-
[17]
(16) Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S. J. Electrochem. Soc. 2002, 149, B321.(16) Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S. J. Electrochem. Soc. 2002, 149, B321.
-
[18]
(17) Chu, S. Z.; Wada, K.; Inoue, S.; Hishita, S.; Kurashima, K. J. Phys. Chem. B 2003, 107, 10180.(17) Chu, S. Z.; Wada, K.; Inoue, S.; Hishita, S.; Kurashima, K. J. Phys. Chem. B 2003, 107, 10180.
-
[19]
(18) Musselman, K. P.; Mulholland, G. J.; Robinson, A. P.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Mater. 2008, 20, 4470.(18) Musselman, K. P.; Mulholland, G. J.; Robinson, A. P.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Adv. Mater. 2008, 20, 4470.
-
[20]
(19) Ren, X.; Gershon, T.; Iza, D. C.; Munoz-Rojas, D.; Musselman, K.; Macmanus-Driscoll, J. L. Nanotechnology 2009, 20, 365604.(19) Ren, X.; Gershon, T.; Iza, D. C.; Munoz-Rojas, D.; Musselman, K.; Macmanus-Driscoll, J. L. Nanotechnology 2009, 20, 365604.
-
[21]
(20) Kuo, C. Y.; Tang, W. C.; Gau, C.; Guo, T. F.; Jeng, D. Z. Appl. Phys. Lett. 2008, 93, 033307.(20) Kuo, C. Y.; Tang, W. C.; Gau, C.; Guo, T. F.; Jeng, D. Z. Appl. Phys. Lett. 2008, 93, 033307.
-
[22]
(21) Foong, T. R. B.; Sellinger, A.; Hu, X. ACS Nano 2008, 2, 2250.(21) Foong, T. R. B.; Sellinger, A.; Hu, X. ACS Nano 2008, 2, 2250.
-
[23]
(22) Xiao, L. X.; Duan, L. Q.; Luo, F. W.; Chen, Z. J.; ng, Q. H. A Way to Fabricate an AAO Template and the Corresponding Device Directly on a Transparent electrode. CN Patent 200810224414.7, 2008-10-14.(22) Xiao, L. X.; Duan, L. Q.; Luo, F. W.; Chen, Z. J.; ng, Q. H. A Way to Fabricate an AAO Template and the Corresponding Device Directly on a Transparent electrode. CN Patent 200810224414.7, 2008-10-14.
-
[24]
[肖立新, 段来强, 罗方闻, 陈志坚, 龚旗煌. 在透明电极上制作AAO模板的方法及相应器件: 中国, CN200810224414.7[肖立新, 段来强, 罗方闻, 陈志坚, 龚旗煌. 在透明电极上制作AAO模板的方法及相应器件: 中国, CN200810224414.7
-
[P]. 2008-10-14.][P]. 2008-10-14.]
-
[26]
(23) Masuda, H.; Yada, K.; Osaka, A. Jpn. J. Appl. Phys. 1998, 37, L1340.(23) Masuda, H.; Yada, K.; Osaka, A. Jpn. J. Appl. Phys. 1998, 37, L1340.
-
[27]
(24) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Adv. Mater. 1999, 11, 483.(24) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Adv. Mater. 1999, 11, 483.
-
[28]
(25) Tang, Y. X.; Tao, J.; Zhang, Y. Y.; Wu, T.; Tao, H. J.; Bao, Z. G. Acta Phys. -Chim. Sin. 2008, 24, 2191.(25) Tang, Y. X.; Tao, J.; Zhang, Y. Y.; Wu, T.; Tao, H. J.; Bao, Z. G. Acta Phys. -Chim. Sin. 2008, 24, 2191.
-
[29]
[汤育欣, 陶 杰, 张焱焱, 吴 涛, 陶海军, 包祖国. 物理化学学报, 2008, 24, 2191.]
[汤育欣, 陶 杰, 张焱焱, 吴 涛, 陶海军, 包祖国. 物理化学学报, 2008, 24, 2191.]
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 1472
- 文章访问数: 3754
- HTML全文浏览量: 36

下载: