Citation: LI Xiao-Yan, LIU Qun, ZHENG Shi-Jun, MENG Ling-Peng. Mechanisms and Kinetics of the HOSO+NO Reaction[J]. Acta Physico-Chimica Sinica, 2011, 27(03): 564-570. doi: 10.3866/PKU.WHXB20110308
HOSO+NO反应的机理及动力学
在B3LYP/6-311++G(d,p)水平上研究了HOSO+NO的反应机理. 优化得到了反应势能面上各驻点的几何构型, 通过内禀反应坐标(IRC)确认了反应物、中间体、过渡态和产物的相关性. 在CCSD(T)/6-311++G(d,p)水平上对计算得到的构型进行了能量校正. 应用经典过渡态理论(TST)与变分过渡态理论(CVT), 并结合小曲率隧道(SCT)效应模型校正的方法计算了标题反应在200-3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明: HOSO+NO反应在单重态和三重态条件下均可发生, 其中单重态反应为主反应通道, HNO+SO2为主产物. 并利用电子密度拓扑分析方法研究主反应通道反应过程中的化学键变化.
English
Mechanisms and Kinetics of the HOSO+NO Reaction
The mechanism of the reaction between HOSO and NO was investigated at the B3LYP/6-311++G(d,p) level of theory. The geometries of the reactants, intermediates, transition states, and products were optimized. The intrinsic reaction coordinates (IRC) were traced and the connecting relationship between the transition states and the reactants, products were confirmed. The single point energies of the species were corrected at the CCSD(T) /6-311++G(d,p) level of theory. The reaction rate constants were calculated over a temperature range of 200-3000 K using classical transition state theory (TST) and canonical vibration transition state theory (CVT) combined with a small-curvature tunneling (SCT) correction. The results showed that the HOSO+NO reaction occurs in both the singlet and triplet reaction channels. The singlet reaction channel is dominant, and HNO and SO2 are the main products. The chemical bond changes in the main reaction channel were analyzed by a topological analysis of the electron density.
-
Key words:
-
HOSO
- / Reaction mechanism
- / Rate constant
- / Topological analysis of electron density
-
-
[1]
(1) Glarborg, P.; Kubel, D.; Dam-Johansen, K.; Chiang, H. M.; Bozzelli, J. W. Int. J. Chem. Kinet. 1996, 28, 773.
(1) Glarborg, P.; Kubel, D.; Dam-Johansen, K.; Chiang, H. M.; Bozzelli, J. W. Int. J. Chem. Kinet. 1996, 28, 773.
-
[2]
(2) Arutyunov, V. A. Catal. 1990, 31, 6.(2) Arutyunov, V. A. Catal. 1990, 31, 6.
-
[3]
(3) Lovejoy, E. R. J. Phys. Chem. 1987, 91, 5749.(3) Lovejoy, E. R. J. Phys. Chem. 1987, 91, 5749.
-
[4]
(4) Frank, A. J.; Sadilek, M.; Ferrier, J. G.; Ture?ek, F. J. Am. Chem. Soc. 1996, 118, 11321.(4) Frank, A. J.; Sadilek, M.; Ferrier, J. G.; Ture?ek, F. J. Am. Chem. Soc. 1996, 118, 11321.
-
[5]
(5) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. Phys. Chem. Chem. Phys. 2002, 4, 1549.(5) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. Phys. Chem. Chem. Phys. 2002, 4, 1549.
-
[6]
(6) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Mol. Struct. 2001, 261, 563.(6) Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Mol. Struct. 2001, 261, 563.
-
[7]
(7) Zachariah, M. R.; Smith, O. I. Combust. Flame 1987, 69, 125.(7) Zachariah, M. R.; Smith, O. I. Combust. Flame 1987, 69, 125.
-
[8]
(8) Cerru, F. G.; Kronenburg, A.; Lindstedt, R. P. Proc. Combust. Inst. 2005, 30, 1227.(8) Cerru, F. G.; Kronenburg, A.; Lindstedt, R. P. Proc. Combust. Inst. 2005, 30, 1227.
-
[9]
(9) Alzueta, M.; Bilbao, R.; Glarborg, P. Combust. Flame 2001, 127, 2234.(9) Alzueta, M.; Bilbao, R.; Glarborg, P. Combust. Flame 2001, 127, 2234.
-
[10]
(10) Blitz, M. A.; McKee, K. W.; Pilling, M. J. Proc. Combust. Inst. 2000, 28, 2491.(10) Blitz, M. A.; McKee, K. W.; Pilling, M. J. Proc. Combust. Inst. 2000, 28, 2491.
-
[11]
(11) Hughes, K. J.; Blitz, M. A.; Pilling, M. J.; Robertson, S. H. Proc. Combust. Inst. 2002, 29, 2431.(11) Hughes, K. J.; Blitz, M. A.; Pilling, M. J.; Robertson, S. H. Proc. Combust. Inst. 2002, 29, 2431.
-
[12]
(12) Roohi, M. Chin. Chem. Lett. 2009, 476, 168.(12) Roohi, M. Chin. Chem. Lett. 2009, 476, 168.
-
[13]
(13) Saliba, N.; Barbara, A.; Koel, B. E. Surface Science 1997, 389, 147.(13) Saliba, N.; Barbara, A.; Koel, B. E. Surface Science 1997, 389, 147.
-
[14]
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
-
[15]
(15) Zhan, P. Y.; Pan, Y.; Tang, Y. Z. Chemical Physics 2009, 360, 53.(15) Zhan, P. Y.; Pan, Y.; Tang, Y. Z. Chemical Physics 2009, 360, 53.
-
[16]
(16) Sun, Y.; Yao, J. Z. J. Mol. Struct.-Theochem 2009, 916, 10 .(16) Sun, Y.; Yao, J. Z. J. Mol. Struct.-Theochem 2009, 916, 10 .
-
[17]
(17) Chen, H. T.; Chen, H. L. Chemical Physics Letters 2009, 470, 172.(17) Chen, H. T.; Chen, H. L. Chemical Physics Letters 2009, 470, 172.
-
[18]
(18) Ishida, G.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.(18) Ishida, G.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.
-
[19]
(19) Xun, G. X.; Li, Y. M.; Wang, D. M. Quantum Chemistry, 2nd ed.; Science Press: Beijing, 2009; pp 423-425.(19) Xun, G. X.; Li, Y. M.; Wang, D. M. Quantum Chemistry, 2nd ed.; Science Press: Beijing, 2009; pp 423-425.
-
[20]
[徐光宪, 黎乐民, 王德民. 量子化学. 第二版. 北京: 科学出版社,2009: 423-425.][徐光宪, 黎乐民, 王德民. 量子化学. 第二版. 北京: 科学出版社,2009: 423-425.]
-
[21]
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2004.(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2004.
-
[22]
(21) Zhang, S. W.; Truong, T. N. VKLab. University of Utah: Salt Lake City, USA, 2001.(21) Zhang, S. W.; Truong, T. N. VKLab. University of Utah: Salt Lake City, USA, 2001.
-
[23]
(22) Biegler-Kônìng, F. J.; Derdau, R.; Bayles, D.; Bader, R. F. W. AIM 2000. University of Applied Science: Bielefeld, Germany, 2000.(22) Biegler-Kônìng, F. J.; Derdau, R.; Bayles, D.; Bader, R. F. W. AIM 2000. University of Applied Science: Bielefeld, Germany, 2000.
-
[24]
(23) Zheng, S. J.; Cai, X. H.; Meng, L. P. QCPE Bull 1995, 15(2), 25.
(23) Zheng, S. J.; Cai, X. H.; Meng, L. P. QCPE Bull 1995, 15(2), 25.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 1226
- 文章访问数: 2622
- HTML全文浏览量: 17

下载: