引用本文:
袁军, 邓明进, 艾军, 解孝林, 郑启新. 聚羟基丁酸-戊酸的非等温热分解反应动力学[J]. 物理化学学报,
2005, 21(09): 988-992.
doi:
10.3866/PKU.WHXB20050909
Citation: YUAN Jun, DENG Ming-jin, AI Jun, XIE Xiao-lin, ZHENG Qi-xin. Non-isothermal Decomposition Kinetics of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Acta Physico-Chimica Sinica, 2005, 21(09): 988-992. doi: 10.3866/PKU.WHXB20050909
Citation: YUAN Jun, DENG Ming-jin, AI Jun, XIE Xiao-lin, ZHENG Qi-xin. Non-isothermal Decomposition Kinetics of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Acta Physico-Chimica Sinica, 2005, 21(09): 988-992. doi: 10.3866/PKU.WHXB20050909
聚羟基丁酸-戊酸的非等温热分解反应动力学
摘要:
用非等温TG-DTA技术, 在5.0、10.0、15.0和20.0 K•min-1线性升温条件下, 研究聚羟基丁酸-戊酸(PHBV)的热分解反应动力学. 结果表明, 分解过程分三个阶段:分解初期、分解中期和分解后期. 分解初期的机理函数为Avrami-Erofeev方程(n=1/2), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为69.44 kJ•mol-1, 指前因子A(β→0)为106.27 s-1;分解中期的机理函数为Avrami-Erofeev方程(n =2/5), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为117.64 kJ•mol-1, 指前因子A(β→0)为1011.48 s-1;分解后期的机理函数为Mampel Power法则(n=1/3), 对应机理为幂函数法则, 表观活化能Ea(β→0)为116.64 kJ•mol-1, 指前因子A(β→0)为108.68 s-1.
English
Non-isothermal Decomposition Kinetics of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
Abstract:
The thermal decomposition kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) has
been investigated by means of non-isothermal TG-DTA with various heating rates of 5.0, 10.0, 15.0, and 20.0 K•min-1. The result shows that the decomposition process of PHBV is composed of three stages:initial stage, medium stage, and end stage. The most probable kinetic function of the initial stage is the Avrami-Erofeev equation with n=1/2, and the corresponding machanism is controlled by random nuclear producing and growing process. The apparent activation energy (Ea(β→0)) and the pre-exponential constant(A(β→0)) are 69.44 kJ•mol-1 and 106.27 s-1 respectively. The most probable kinetic function of the medium stage is the Avrami-Erofeev equation with n=2/5, and the corresponding machanism is the same with the previous stage. The apparent activation energy (Ea(β→0)) and the pre-exponential constant (A(β→0)) are 117.64 kJ•mol-1 and 1011.48 s-1 respectively. The most probable kinetic function of the end stage is the exponential function with n=1/3, and the corresponding mechanism follows Mampel Power theorem. The apparent activation energy(Ea(β→0)) and the pre-exponential constant (A(β→0)) are 116.64 kJ•mol-1 and 108.68 s-1 respectively.
扫一扫看文章
计量
- PDF下载量: 2559
- 文章访问数: 3866
- HTML全文浏览量: 31

下载: