Citation: Jiajia Xu, Zhiguo Zhu, Ting Su, Weiping Liao, Changliang Deng, Dongmei Hao, Yuchao Zhao, Wanzhong Ren, Hongying Lü. Green aerobic oxidative desulfurization of diesel by constructing an Fe-Anderson type polyoxometalate and benzene sulfonic acid-based deep eutectic solvent biomimetic cycle[J]. Chinese Journal of Catalysis, 2020, 41(5): 868-876. doi: S1872-2067(19)63500-X
Fe-Anderson型多金属氧酸盐和苯磺酸基低共熔溶剂仿生体系的构建及其柴油绿色氧化脱硫
本文采用仿生方法研究了一种新型高效的AODS体系,该体系能显著提高ODS的效率.采用重结晶法制备了安德森型催化剂Na3Fe(OH)6Mo6O18,并将其应用于柴油AODS体系.通过分析紫外-可见光谱(UV-Vis)、红外光谱(FT-IR)以及气质联用光谱(GC-MS),我们推测了通过多步电子转移AODS体系的仿生机理.首先,POM和氧气形成过氧聚阴离子,然后与苯磺酸形成苯基过氧磺酸.由于过氧磺酸盐对富电子的硫原子具有很高的选择性,所以它优先攻击硫原子.因此,二苯并噻吩被氧化成二苯并噻吩砜.还原后的苯磺酸和POM被氧气氧化,形成新的催化循环.这些结果表明,耦合氧化还原体系和ETMs通过低能量途径将电子从苯磺酸基DES转移到氧化剂,从而促进了反应过程.最终,二苯并噻吩易被氧化为二苯并噻吩砜.
DES的物理性质表明,在60℃时,n(PEG2000)/n(BSA)=2.5体系中DES粘度最大,推测可能是氢键较强所致.此外,PEG2000/2.5BSA体系脱硫效果也是最好的.这一结果表明,脱硫体系的活性与氢键的强度有关.将该仿生策略应用于模型柴油的AODS中,在60min内二苯并噻吩脱除率达到95%,表现出前所未有的性能,并且该仿生体系也可以成功应用于真实柴油的氧化脱硫.该催化剂可重复使用五次,且反应活性无明显降低,表明该催化体系具有商业应用潜力.
English
Green aerobic oxidative desulfurization of diesel by constructing an Fe-Anderson type polyoxometalate and benzene sulfonic acid-based deep eutectic solvent biomimetic cycle
-
-
[1] R. P. Gupta, B. S. Turk, J. W. Portzer, D. C. Cicero, Environ. Prog., 2001, 20, 187-195.
-
[2] R. T. Yang, A. J. Hernández-Maldonado, F. H. Yang, Science, 2003, 301, 79-81.
-
[3] D. Zhao, J. Wang, E. Zhou, Green Chem., 2007, 9, 1219-1222.
-
[4] J. M. Campos-Martin, M. C. Capel-Sanchez, P. Perez-Presas, J. L. G. Fierro, J. Chem. Technol. Biotechnol., 2010, 85, 879-890.
-
[5] A. Mansouri, A. A. Khodadadi, Y. Mortazavi, J. Hazard. Mater., 2014, 271, 120-130.
-
[6] W. H. Lo, H. Y. Yang, G. T. Wei, Green Chem., 2003, 5, 639-642.
-
[7] H. Xu, D. Zhang, F. Wu, R. Cao, Fuel, 2017, 208, 508-513.
-
[8] Y. Tian, Y. Yao, Y. Zhi, L. Yan, S. Lu, Energy Fuels, 2015, 29, 618-625.
-
[9] D. Yan, J. Xin, C. Shi, X. Lu, L. Ni, G. Wang, S. Zhang, Chem. Eng. J., 2017, 323, 473-482.
-
[10] D. Yan, J. Xin, Q. Zhao, K. Gao, X. Lu, G. Wang, S. Zhang, Catal. Sci. Technol., 2018, 8, 164-175.
-
[11] Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev., 2012, 41, 7108-7146.
-
[12] I. M. Aroso, A. Paiva, R. L. Reis, A. R. C. Duarte, J. Mol. Liq., 2017, 241, 654-661.
-
[13] A. R. R. Teles, E. V. Capela, R. S. Carmo, J. A. P. Coutinho, A. J. D. Silvestre, M. G. Freire, Fluid Phase Equilib., 2017, 448, 15-21.
-
[14] H. Ren, S. Lian, X. Wang, Y. Zhang, E. Duan, J. Cleaner Prod., 2018, 193, 802-810.
-
[15] S. Wang, P. Li, L. Hao, C. Deng, W. Ren, H. Lü, Chem. Eng. Technol., 2017, 40, 555-560.
-
[16] L. Zhang, J. Wang, Y. Sun, B. Jiang, H. Yang, Chem. Eng. J., 2017, 328, 445-453.
-
[17] W. Zhu, B. Dai, P. Wu, Y. Chao, J. Xiong, S. Xun, H. Li, H. Li, ACS Sustainable Chem., 2015, 3, 186-194.
-
[18] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc., 2004, 126, 9142-9147.
-
[19] A. P. Abbott, J. C. Barron, G. Frisch, S. Gurman, K. S. Ryder, A. Fernando Silva, Phys. Chem. Chem. Phys., 2011, 13, 10224-10231.
-
[20] E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 114, 11060-11082.
-
[21] K. D. O. Vigier, A. Benguerba, J. Barrault, F. Jérôme, Green Chem., 2012, 14, 285-289.
-
[22] L. Liu, J. Yang, J. Li, J. Dong, D. Šišak, M. Luzzatto, L. B. McCusker, Angew. Chem. Int. Ed., 2011, 50, 8139-8142.
-
[23] M. Francisco, A. Van Den Bruinhorst, M. C. Kroon, Angew. Chem., Int. Ed., 2013, 52, 3074-3085.
-
[24] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun., 2003, 1, 70-71.
-
[25] H. Lü, K. Wu, Y. Zhao, L. Hao, W. Liao, C. Deng, W. Ren, J. CO2 Util., 2017, 22, 400-406.
-
[26] H. Lü, P. Li, C. Deng, W. Ren, S. Wang, P. Liu, H. Zhang, Chem. Commun., 2015, 51, 10703-10706.
-
[27] L. Hao, T. Su, D. Hao, C. Deng, W. Ren, H. Lü, Chin. J. Catal., 2018, 39, 1552-1559.
-
[28] A. Chica, G. Gatti, B. Moden, L. Marchese, E. Iglesia, Chem.-Eur. J., 2006, 12, 1960-1967.
-
[29] C. Ma, B. Dai, P. Liu, N. Zhou, A. Shi, L. Ban, H. Chen, J. Ind. Eng. Chem., 2014, 20, 2769-2774.
-
[30] H. Lü, S. Wang, C. Deng, W. Ren, B. Guo, J. Hazard. Mater., 2014, 279, 220-225.
-
[31] L. Hao, M. Wang, W. Shan, C. Deng, W. Ren, Z. Shi, H. Lü, J. Hazard. Mater., 2017, 339, 216-222.
-
[32] B. Dai, P. Wu, W. Zhu, Y. Chao, J. Sun, J. Xiong, W. Jiang, H. Li, RSC Adv., 2015, 6, 140-147.
-
[33] H. Ji, J. Sun, P. Wu, Y. Wu, J. He, Y. Chao, W. Zhu, H. Li, Fuel, 2018, 213, 12-21.
-
[34] H. Lü, J. Gao, Z. Jiang, Y. Yang, B. Song, C. Li, Chem. Commun., 2007, 2, 150-152.
-
[35] A. M. Khenkin, R. Neumann, ChemSusChem, 2011, 4, 346-348.
-
[36] P. Wu, W. Zhu, Y. Chao, J. Zhang, P. Zhang, H. Zhu, C. Li, Z. Chen, H. Li, S. Dai, Chem. Commun., 2016, 52, 144-147.
-
[37] P. Wu, W. Zhu, B. Dai, Y. Chao, C. Li, H. Li, M. Zhang, W. Jiang, H. Li, Chem. Eng. J., 2016, 301, 123-131.
-
[38] X. Yao, C. Wang, H. Liu, H. Li, P. Wu, L. Fan, H. Li, W. Zhu, Ind. Eng. Chem. Res., 2019, 58, 863-871.
-
[39] W. Zhu, C. Wang, H. Li, P. Wu, S. Xun, W. Jiang, Z. Chen, Z. Zhao, H. Li, Green Chem., 2015, 17, 2464-2472.
-
[40] S. Omwoma, C. T. Gore, Y. Ji, C. Hu, Y. F. Song, Coord. Chem. Rev., 2014, 286, 17-29.
-
[41] H. Lü, Y. Zhang, Z. Jiang, C. Li, Green Chem., 2010, 12, 1954-1958.
-
[42] H. Lü, W. Ren, W. Liao, W. Chen, Y. Li, Z. Suo, Appl. Catal. B, 2013, 138-139, 79-83.
-
[43] S. Oae, T. Takata, Tetrahedron Lett., 1980, 21, 1-4.
-
[44] R. Kluge, M. Schulz, G. Strabe, Tetrahedron, 1996, 52, 2957-2976.
-
[45] M. Schulz, S. Liebsch, R. Kluge, W. Adam, J. Org. Chem., 2002, 62, 188-193.
-
[46] J. Piera, J. Bäckvall, Angew. Chem. Int. Ed., 2008, 47, 3506-3523.
-
[47] P. Gouzerh, A. Proust, Chem. Rev., 1998, 98, 77-112.
-
[48] M. Zhao, X. Zhang, C. Wu, ACS Catal., 2017, 7, 6573-6580.
-
[49] B. P. Babu, X. Meng, J.-E. Bäckvall, Chem. Eur. J., 2013, 19, 4140-4145.
-
[50] L. Sun, T. Su, J. Xu, D. Hao, W. Liao, Y. Zhao, W. Ren, C. Deng, H. Lü, Green Chem., 2019, 21, 2629-2634
-
[51] A. Blazevic, E. Al-Sayed, A. Roller, G. Giester, A. Rompel, Chem.-Eur. J., 2015, 21, 4762-4771.
-
[52] H. Ji, J. Sun, P. Wu, B. Dai, Y. Chao, M. Zhang, W. Jiang, W. Zhu, H. Li, J. Mol. Catal. A, 2016, 423, 207-215.
-
[53] H. Lü, W. Ren, P. Liu, S. Qi, W. Wang, Y. Feng, F. Sun, Y. Wang, Appl. Catal. A, 2012, 441-442, 136-141.
-
[54] C. Guo, Q. Liu, X. T. Wang, H. Y. Hu, Appl. Catal. A, 2005, 282, 55-59.
-
[55] J. F. Black, J. Am. Chem. Soc., 1978, 100, 527-535.
-
[56] H. Lü, P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, C. Deng, F. Yang, Chem. Eng. J., 2017, 313, 1004-1009.
-
[57] W. Jiang, L. Dong, W. Liu, T. Guo, H. Li, M. Zhang, W. Zhu, H. Li, RSC Adv., 2017, 7, 55318-55325.
-
[58] H. Li, W. Zhu, S. Zhu, J. Xia, AIChE J., 2016, 62, 2087-2100.
-
[59] H. Lü, W. Ren, H. Wang, Y. Wang, W. Chen, Z. Suo, Appl. Catal. A, 2013, 453, 376-382.
-
[60] A. Pinkert, K. N. Marsh, S. Pang, M. P. Staiger, Chem. Rev., 2009, 109, 6712-6728.
-
[61] H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev., 2012, 41, 1519-1537.
-
[62] J. Gao, Y. Chen, B. Han, Z. Feng, C. Li, N. Zhou, S. Gao, Z. Xi, J. Mol. Catal. A, 2004, 210, 197-204.
-
-
扫一扫看文章
计量
- PDF下载量: 5
- 文章访问数: 637
- HTML全文浏览量: 33

下载: