Citation: Rongrong Zeng, Kun Wang, Wei Shao, Junhang Lai, Shuqin Song, Yi Wang. Investigation on the coordination mechanism of Pt-containing species and qualification of the alkaline content during Pt/C preparation via a solvothermal polyol method[J]. Chinese Journal of Catalysis, 2020, 41(5): 820-829. doi: S1872-2067(19)63456-X
溶剂热助乙二醇还原法制备Pt/C催化剂过程中酸碱配位机制及工艺参数优化
EG在外界能量的活化下,分解生成H2O和CH3CHO,CH3CHO作为还原剂将H2PtCl6还原生成Pt单质颗粒,同时生成的CH3COO-由于静电排斥可以防止Pt粒子团聚.常见的外界能量的活化方法有脉冲微波法、回流法、溶剂热法等,其中溶剂热法采用高压釜作为反应容器,抗干扰能力强,工艺操作简单、反应快速、耗能较少、成本低廉,极易于实现工业化生产;值得注意的是,无论使用何种方法对Pt前驱体混合液给予活化能使其发生还原,其碱的含量都会对最终所得催化剂的电催化ORR活性有着显著的影响,因此,通过跟踪前驱体混合液中含Pt物种的变化路径,揭示催化剂制备过程中的碱调控机理,实现加入碱的定量化,对于大规模制备高效Pt/C催化剂具有重要的意义.
因此,本文采用溶剂热助EG还原法合成Pt/C催化剂的技术,创新联用UV-vis和H+浓度探针技术,揭示了前驱体混合液中含Pt物种的配位过程,实现了加入碱的定量化.发现当m(NaOH):m(Pt)达到2:1时,Pt配位完成;进而通过优化反应温度、反应时间等参数,成功制备了高效Pt/C催化剂:当反应温度为140℃,反应时间为2h时,所得催化剂在酸性条件下,相对于商业化Pt/C具有更高的电催化ORR活性,其起始ORR还原电位达到0.95V(商业化Pt/C为0.90V),半波电位为0.82V(商业化Pt/C为0.75V),该工作对于工业化大批量生产高效Pt/C催化剂具有重要的意义.
-
关键词:
- Pt/C
- / 氧还原反应
- / 溶剂热助乙二醇还原法
- / 电催化活性
English
Investigation on the coordination mechanism of Pt-containing species and qualification of the alkaline content during Pt/C preparation via a solvothermal polyol method
-
-
[1] J. Fang, L. T. Hu, M. R. Wang, L. Gan, C. Chen, Y. J. Jiang, B. H. Xiao, Y. Q. Lai, J. Li, Mater. Lett., 2018, 218, 36-39.
-
[2] J. F. Kong, W. L. Cheng, Chin. J. Catal. 2017, 38, 951-969.
-
[3] S. Sui, X. Y. Wang, X. T. Zhou, Y. H. Su, S. Riffatc, C. J. Liu, J. Mater. Chem. A, 2017, 5, 1808-1825.
-
[4] Y. Wang, M. Yi, K. Wang, S. Q. Song, Chin. J. Catal. 2019, 40, 523-533.
-
[5] N. F. Rosli, C. C. Mayorga-Martinez, N. M. Latiff, N. Rohaizad, Z. Sofer, A. C. Fisher, M. Pumera, ACS Sustain. Chem. Eng., 2018, 6, 7432-7441.
-
[6] Y. Wang, H. Y. Liu, K. Wang, S. Q. Song, P. Tsiakaras, Appl. Catal. B, 2017, 210, 57-66.
-
[7] I. Leea, J. B. Joob, M. Shokouhimehrc, Chin. J. Catal., 2015, 36, 1799-1810.
-
[8] S. Q. Song, Y. Wang, P. K. Shen, J. Power Sources, 2007, 170, 46-49.
-
[9] P. Webera, M. Werheida, M. Janssena, M. Oezaslana, ECS Trans., 2018, 86, 433-445.
-
[10] N. E. Sahin, T. W. Napporn, L. Dubau, F. Kadirgan, J. M. Léger, K. B. Kokoh, Appl. Catal. B, 2017, 203, 72-84.
-
[11] F. Wu, Y. H. Liu, C. Wu, Chin. J. Process Eng., 2009, 9, 1198-1203.
-
[12] W. Z. Li, Z. H. Zhou, W. J. Zhou, H. Q. Li, X. S. Zhao, G. X. Wang, G. Q. Sun, Q. Xin, Chin. J. Catal., 2003, 24, 465-470.
-
[13] L.C. Han,[MS Dissertation], Qingdao University of Science and Technology, 2014, 15-17.
-
[14] K. Wang, Z. Pan, F. Tzorbatzoglou, Y.L Zhang, Y. Wang, P. Tsiakaras, S.Q. Song, Appl. Catal. B, 2015, 166, 224-230.
-
[15] A. B. A. A. Nassr, I. Sinev, MM. Pohl, W. Grünert, M. Bron, ACS Catal., 2014, 4, 2449-2462.
-
[16] Y. N. Wu, Z. S. Chen, Z. Y. Mo, P Yan, Z. Z. Wang, Rare Metal Mater. Eng., 2017, 46, 841-846.
-
[17] Y. N. Wu, S. H. Li, X. P. Xiao, M. Q. Zheng, S. Z. Chen, P. Yan, Z. Z. Wang, Chem. Res. Appl., 2015, 27, 684-688.
-
[18] Y. Tan, Shandong Chem. Ind., 2017, 46, 45-47.
-
[19] L. M. Zhang, Z. B. Wang, J. J. Zhang, X. L. Sui, L. Zhao, J. C. Han, Fuel Cells, 2015, 15, 619-627.
-
[20] H. Wen, Y. H. Qin, W. L. Li, Chin. J. Power Sources, 2010, 34, 157-159.
-
[21] C. Gumeci, A. Marathe, R. L. Behrens, J. Chaudhuri, C. Korzeniewski, J. Phys. Chem. C, 2014, 118, 14433-14440.
-
[22] M. Wang, Z. W. Wang, L. Wei, J. W. Li, X. S. Zhao, Chin. J. Catal., 2017, 38, 1680-1687.
-
[23] S. Ghannoum, Y. Xin, J. Jaber, L.I. Halaoui, Langmuir, 2003, 19, 4804-4811.
-
[24] L. I. Şanlı, V. Bayram, B. Yarar, S. Ghobadi, S. A. Gürsela, Int. J. Hydrogen Energy, 2016, 41, 3414-3427.
-
[25] B. Jang, E. Choi, Y. Piaoa, Mater. Res. Bull., 2013, 48, 834-839.
-
[26] Y. Kim, Y. Kwon, J. W. Hong, BS. Choi, Y. Park, M. Kim, S. W. Han, Cryst. Eng. Comm., 2016, 18, 2356-2362.
-
[27] P. Song, L. Liu, A.J. Wang, X. Zhang, S. Y. Zhou, J. J. Feng, Electrochim. Acta, 2015, 164, 323-329.
-
[28] W. A. Spieker, J. Liu, J. T. Miller, A. J. Kropf, J. R. Regalbuto, Appl. Catal. A, 2002, 232, 219-235.
-
[29] W. A. Spieker, J. Liu, X. Hao, J. T. Miller, A. J. Kropf, J. R. Regalbuto, Appl. Catal. A, 2003, 243, 53-66.
-
[30] A. Siani, K. R. Wigal, O. S. Alexeev, M. D. Amiridis, J. Catal., 2008, 257, 5-15.
-
[31] Y. Wang, X. Zeng, H. Liu, S. Q. Song, Chin. J. Catal., 2011, 32, 184-188.
-
[32] W. L. Zhang,[MS Dissertation]. Jilin University, 2012, 31-35.
-
[33] M.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S. Mn De Lecea, H. Yamashita, M. Anpo, Carbon, 1995, 33, 3-13.
-
[34] Y.Y. Shao, G. P. Yin, J. Zhang, Y. Z. Gao, P. F. Shi, Chin. J. Catal., 2006, 27, 606-610.
-
[35] L. Sementa, O. Andreussi, W. A. Goddard, A. Fortunelli, Catal. Sci. Technol., 2016, 6, 6901-6909.
-
[36] S. Hussain, H. Erikson, N. Kongi, M. Merisalu, P. Ritslaid, V. Sammelselg, K. Tammeveski, Int. J. Hydrogen Energy, 2017, 42, 5958-5970.
-
[37] Y. J. Wang, N. Zhao, B. Z. Fang, H. Li, X. T. Bi, H. J. Wang, Chem. Rev., 2015, 115, 3433-3467.
-
[38] Y. X. Tuo, L. J. Shi, H. Y. Cheng, Y. A. Zhu, M. L. Yang, J. Xu, Y. F. Han, P. Li, W. K. Yuan, J. Catal., 2018, 360, 175-186.
-
[39] K. Shinozaki, Y. Morimoto, B. S. Pivovar, S. S. Kocha, Electrochim. Acta, 2016, 213, 783-790.
-
[40] C. He, S. Song, J. Liu, V. Maragou, P. Tsiakaras, J. Power Sources, 2010, 195, 7409-7414.
-
[41] C. He, Y. Liang, R. Fu, D. Wu, S. Song, R. Cai, J. Mater. Chem., 2011, 21, 16357-16364.
-
[42] L. Sementa, O. Andreussi, W. A. Goddard III, A. Fortunelli, Catal. Sci. Technol., 2016, 6, 6901-6909.
-
[43] M. Peuckert, T. Yoneda, R. A. Dalla Betta, M. Boudart, J. Electrochem. Soc., 1986, 133, 944-947.
-
[44] G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W. Lin, H. Dai, Energy Environ. Sci., 2019, 12, 1317-1325.
-
[45] D. Sun, S. Wageh, A. A. Al-Ghamdi, Y. Le, J. Yu, C. Jiang, Appl. Surf. Sci., 2019, 466, 301-308.
-
-
扫一扫看文章
计量
- PDF下载量: 2
- 文章访问数: 1048
- HTML全文浏览量: 172

下载: