钯铂核壳纳米催化剂颗粒中的原子扩散

张焰峰 朱尚乾 张莉莉 苏东 邵敏华

引用本文: 张焰峰,  朱尚乾,  张莉莉,  苏东,  邵敏华. 钯铂核壳纳米催化剂颗粒中的原子扩散[J]. 催化学报, 2020, 41(5): 807-812. doi: S1872-2067(19)63451-0 shu
Citation:  Yanfeng Zhang,  Shangqian Zhu,  Lili Zhang,  Dong Su,  Minhua Shao. Interatomic diffusion in Pd-Pt core-shell nanoparticles[J]. Chinese Journal of Catalysis, 2020, 41(5): 807-812. doi: S1872-2067(19)63451-0 shu

钯铂核壳纳米催化剂颗粒中的原子扩散

  • 基金项目:

    国家重点研发计划(2017YFB0102900);香港特别行政区研究资助局(26206115,16304117);广东省科技发展专项基金(香港科技合作资助计划(201604030012,201704030065)).

摘要: 铂原子单层的核壳结构催化剂因其高效的铂原子利用率和优异铂质量活性而广泛应用于燃料电池领域.在该系列材料中,钯@铂核壳催化剂具有更优于纯铂的氧还原(ORR)催化活性,因而拥有较好的应用前景.但由于钯原子在热力学上更倾向于富集到材料表面,钯@铂核壳催化剂的催化稳定性及原子扩散的途径需要更深入的研究.本文探究了热处理条件对钯@铂核壳结构稳定性的破坏,并确定了原子扩散对催化活性的影响.
原位扫描透射电子显微镜-电子能量损失谱(STEM-EELS)证明了在250℃的氩气氛围中,钯@铂纳米颗粒中原本清晰可见的1-2原子铂壳层已经消失,并伴随着颗粒表面钯铂合金化的形成.因钯金属可以吸收氢气而导致晶格间距的展宽,钯@铂核壳结构的破坏也可以通过氢气氛围中的原位X射线衍射谱中(111)衍射峰的展宽和位移进行判断.对钯@铂核壳纳米催化剂进行一系列温度的热处理结果显示,核壳结构的破坏在200℃左右开始,并于200-300℃之间急剧发生.一氧化碳电化学氧化脱附实验表明,热处理之后的核壳催化剂表面的一氧化碳氧化峰位置发生了明显的正移,也证明了热处理之后催化剂表面电子结构的变化.核壳结构改变对催化活性的影响也通过旋转圆盘电极进行了测量.相比于未经处理的样品,200℃处理之后的钯@铂核壳催化剂在0.9V电位处的质量活性损失了约37%.进一步提高热处理温度至300℃之后,钯@铂核壳催化剂的质量活性只有初始状态的44%.本文揭示核壳结构中因热处理而导致的原子扩散现象,并为燃料电池中核壳催化剂的应用及膜电极的制备工艺条件提供了参考.

English

    1. [1] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Top. Catal., 2007, 46, 249-262.

    2. [2] M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev., 2016, 116, 3594-3657.

    3. [3] M. Shao, G. He, A. Peles, J. H. Odell, J. Zeng, D. Su, J. Tao, T. Yu, Y. Zhu, Y. Xia, Chem. Commun., 2013, 49, 9030-9032.

    4. [4] M. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovic, R. R. Adzic, Langmuir, 2006, 22, 10409-10415.

    5. [5] X. Wang, M. Vara, M. Luo, H. Huang, A. Ruditskiy, J. Park, S. Bao, J. Liu, J. Howe, M. Chi, Z. Xie, Y. Xia, J. Am. Chem. Soc., 2015, 137, 15036-15042.

    6. [6] J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic, J. Phys. Chem. B, 2005, 109, 22701-22704.

    7. [7] J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic, J. Phys. Chem. B, 2004, 108, 10955-10964.

    8. [8] L. Zhang, S. Zhu, Q. Chang, D. Su, J. Yue, Z. Du, M. Shao, ACS Catal., 2016, 6, 3428-3432.

    9. [9] M. Zhou, H. Wang, M. Vara, Z. D. Hood, M. Luo, T.-H. Yang, S. Bao, M. Chi, P. Xiao, Y. Zhang, Y. Xia, J. Am. Chem. Soc., 2016, 138, 12263-12270.

    10. [10] J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, Angew. Chem. Int. Ed., 2005, 44, 2132-2135.

    11. [11] V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int. Ed., 2006, 45, 2897-2901.

    12. [12] S. Khateeb, S. Guerreo, D. Su, R. M. Darling, L. V. Protsailo, M. Shao, J. Electrochem. Soc., 2016, 163, F708-F713.

    13. [13] M. H. Shao, J. Power Sources, 2011, 196, 2433-2444.

    14. [14] M. P. Humbert, B. H. Smith, Q. Wang, S. N. Ehrlich, M. Shao, Electrocatalysis, 2012, 3, 298-303.

    15. [15] M. Shao, J. H. Odell, S.-I. Choi, Y. Xia, Electrochem. Commun., 2013, 31, 46-48.

    16. [16] G. Alefeld, J. Völkl, in:Hydrogen in Metals I-Basic Properties, Berlin and New York, Springer-Verlag (Topics in Applied Physics. Volume 28), 1978. 442 p.(For individual items see A79-16057 to A79-16061), 1978.

    17. [17] A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao, A. E. Russell, Phys. Chem. Chem. Phys., 2003, 5, 3220-3225.

    18. [18] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886-17892.

    19. [19] M. Shao, P. Liu, J. Zhang, R. Adzic, J. Phys. Chem. B, 2007, 111, 6772-6775.

    20. [20] S. J. Yoo, H. Y. Park, T. Y. Jeon, I. S. Park, Y. H. Cho, Y. E. Sung, Angew. Chem. Int. Ed., 2008, 47, 9307-9310.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  527
  • HTML全文浏览量:  27
文章相关
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-10-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章