Citation: Shenzhou Li, Jianyun Liu, Shuo Duan, Tanyuan Wang, Qing Li. Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping[J]. Chinese Journal of Catalysis, 2020, 41(5): 847-852. doi: S1872-2067(19)63356-5
硫掺杂镍铁层状双氢氧化物的氧析出电催化性能
扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积,X射线荧光光谱分析证明合成的硫掺杂NiFe-LDHs中镍铁的元素比例为4:1,而且硫的掺杂量并不影响催化剂的形貌和其中镍铁元素比.X射线光电子能谱分析表明,硫原子的引入使得铁原子结合能降低,即硫与铁的相互作用部分降低了铁的价态,这种硫和铁的相互作用能够优化OER反应中间体OH*与O*在铁活性位点上的吸附自由能,降低氧析出反应的过电势.电化学测试表明,拥有0.43%的硫掺杂NiFe-LDHs拥有最好的氧析出性能,10mA cm-1下超电势仅有257mV,Tafel斜率61.5mV dec-1.此后,随着硫掺杂量的提升,其性能先保持稳定,随后有所下降.在稳定测试中,硫掺杂的镍铁层状双氢氧化物在10mA cm-1电流密度下循环30h后过电位仅衰减14mV.在对稳定性测试后的催化剂进行表征表明,催化剂发生了轻微了变形,但这对性能的影响不大.综上,本文提供了一种简便的通过非金属元素掺杂调控过渡金属氧化物的结构和电子态的方法,有望为设计高活性OER电催化剂提供新思路.
English
Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping
-
Key words:
- Oxygen evolution
- / Electrocatalysis
- / Layered double hydroxides
- / Sulfur doping
- / Water splitting
-
-
[1] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473.
-
[2] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, J. W. Tang, Energy Environ. Sci., 2015, 8, 731-759.
-
[3] T. Wang, H. Xie, M. Chen, A. D'Aloia, J. Cho, G. Wu, Q. Li, Nano Energy, 2017, 42, 69-89.
-
[4] Z. Miao, X. Wang, M.-C. Tsai, Q. Jin, J. Liang, F. Ma, T. Wang, S. Zheng, B.-J. Hwang, Y. Huang, S. Guo, Q. Li, Adv. Energy Mater. 2018, 8, 1801226.
-
[5] Y. Ji, L. Yang, X. Ren, G. Cui, X. Xiong, X. Sun, ACS Sustain. Chem. Eng., 2018, 6, 9555-9559.
-
[6] J. B. Goodenough, Y. Kim, Chem. Mater., 2010, 22, 587-603.
-
[7] Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H.-L. Wang, G. Wu, Adv. Mater., 2014, 26, 1378-1386.
-
[8] F. Cheng, J. Chen, Chem. Soc. Rev., 2012, 41, 2172-2192.
-
[9] Z. L. Wang, D. Xu, J. Xu, X. B. Zhang, Chem. Soc. Rev., 2014, 43, 7746-7786.
-
[10] Y. Li, M. Gong, Y. Liang, J. Feng, J. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun., 2013, 4, 1805.
-
[11] H. Xie, T. Wang, J. Liang, Q. Li, S. Sun, Nano Today, 2018, 21, 41-54.
-
[12] H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, H.-L. Wang, Y. Huang, Q. Li, ACS Appl. Mater. Interfaces, 2018, 10, 36996-37004.
-
[13] Y. Surendranath, M. W. Kanan, D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 16501-16509.
-
[14] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365.
-
[15] L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc., 2014, 136, 6744-6753.
-
[16] W. Chen, H. Wang, Y. Li, Y. Liu, J. Sun, S. Lee, J. Lee, Y. Cui, ACS Central Sci., 2015, 1, 244-251.
-
[17] P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2015, 54, 14710-14714.
-
[18] M. Gong, Y. Li, H. Wang, Y. Liang, J. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc., 2013, 135, 8452-8455.
-
[19] L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 5277-5281.
-
[20] T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater., 2018, 30, 1800757.
-
[21] X. Xu, F. Song, X. L. Hu, Nat. Commun., 2016, 7, 12324.
-
[22] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.
-
[23] Y. Liu, H. Cheng, M. J. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc., 2014, 136, 15670-15675.
-
[24] T. Wang, C. Wang, Y. Jin, A. Sviripa, J. Liang, J. Han, Y. Huang, Q. Li, G. Wu, J. Mater. Chem. A, 2017, 5, 25378-25384.
-
[25] L. A. Stern, L. G. Feng, F. Song, X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
-
[26] X. Ji, R. Zhang, X. Shi, A. M. Asiri, B. Zheng, X. Sun, Nanoscale, 2018, 10, 7941-7945.
-
[27] M. Zhou, Q. Weng, X. Zhang, X. Wang, Y. Xue, X. Zeng, Y. Bando, D. Golberg, J. Mater. Chem. A, 2017, 5, 4335-4342.
-
[28] W. Zhou, X. J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci., 2013, 6, 2921-2924.
-
[29] K. Fominykh, J. M. Feckl, J. Sicklinger, M. Doblinger, S. Bocklein, J. Ziegler, L. Peter, J. Rathousky, E. W. Scheidt, T. Bein, D. Fattakhova-Rohlfing, Adv. Funct. Mater., 2014, 24, 3123-3129.
-
[30] S. Chen, J. J. Duan, P. J. Bian, Y. H. Tang, R. K. Zheng, S. Z. Qiao, Adv. Energy Mater., 2015, 5, 1500936.
-
[31] J. Zhang, D. Zhang, R. Zhang, N. Zhang, C. Cui, J. Zhang, B. Jiang, B, Yuan, T. Wang, H. Xie, Q. Li, ACS Appl. Energy Mater., 2018, 1, 495-502.
-
[32] M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc., 2013, 135, 8452-8455.
-
[33] Q. Wang, D. O'Hare, Chem. Rev., 2012, 112, 4124-4155.
-
[34] D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc., 2015, 137, 1305-1313.
-
[35] J. Zhao, X. Li, G. Cui, X. Sun, Chem. Commun., 2018, 54, 5462-5465.
-
[36] M. W. Louie, A. T. Bell, J. Am. Chem. Soc., 2013, 135, 12329-12337.
-
[37] S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2013, 52, 13567-13570.
-
[38] C. G. Morales-Guio, L. Liardet, X. Hu, J. Am. Chem. Soc., 2016, 138, 8946-8957.
-
[39] H. Shi, H. Liang, F. Ming, Z. Wang, Angew. Chem. Int. Ed., 2017, 56, 573-577.
-
[40] C. Xiao, X. Lu, C. Zhao, Chem. Commun., 2014, 50, 10122-10125.
-
[41] C. Z. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskel, A. Eychmuller, Chem. Commun., 2015, 51, 7851-7854.
-
[42] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun., 2014, 50, 6479-6482.
-
-
扫一扫看文章
计量
- PDF下载量: 7
- 文章访问数: 1630
- HTML全文浏览量: 119

下载: