Cp*Rh(Ⅲ)-Catalyzed C—H 3, 3-Difluoroallylation of Indoles and N-Iodosuccinimide-Mediated Cyclization for the Synthesis of Fluorinated 3, 4-Dihydropyrimido-[1, 6-a]-indol-1(2H)-one Derivatives

Sen Zhao Chunpu Li Bin Xu Hong Liu

Citation:  Zhao Sen, Li Chunpu, Xu Bin, Liu Hong. Cp*Rh(Ⅲ)-Catalyzed C—H 3, 3-Difluoroallylation of Indoles and N-Iodosuccinimide-Mediated Cyclization for the Synthesis of Fluorinated 3, 4-Dihydropyrimido-[1, 6-a]-indol-1(2H)-one Derivatives[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1549-1562. doi: 10.6023/cjoc202004039 shu

铑催化碳氢二氟烯丙基化/N-碘代丁二酰亚胺介导的环化反应构建含氟3, 4-二氢嘧啶并[1, 6-a]吲哚-1(2H)-酮衍生物

    通讯作者: 许斌, xubin@shu.edu.cn
    柳红, hliu@simm.ac.cn
  • 基金项目:

    中国科学院战略性先导科技专项 XDA12050411

    国家自然科学基金 81220108025

    国家自然科学基金 91229204

    国家自然科学基金 81620108027

    中国科学院战略性先导科技专项 XDA12020375

    国家自然科学基金 21632008

    国家自然科学基金(Nos.81620108027, 21632008, 91229204, 81220108025)、中国科学院战略性先导科技专项(Nos.XDA12020375, XDA12050411)资助项目

摘要: 发展了一种通过铑催化碳氢二氟烯丙基化/N-碘代丁二酰亚胺(NIS)介导的环化反应构建含氟3,4-二氢嘧啶并[1,6-a]吲哚-1(2H)-酮衍生物的方法.该方法具有反应条件温和、底物适用范围广等优点.该方法为构建用于发现药物的含氟杂环化合物提供了潜在的策略.

English

  • The indole scaffold is a privileged structure and ubiquitously present in nature. Indole-fused heterocycles, such as pyrimido[1, 6-a]-indol-1(2H)-one and 3, 4-dihydropyrimido- [1, 6-a]-indol-1(2H)-one analogues, are central skeleton of many biologically active natural products and drugs. In particular, pyrimido[1, 6-a]-indol-1(2H)-one and 3, 4-dihy- dropyrimido[1, 6-a]-indol-1(2H)-one are fluorescent material, 5-HT3 receptor antagonist, natural product analogues, etc. (Figure 1).[1] The synthesis of these indole-fused heterocycles either requires multistep synthesis or suffers from poor functional group tolerance. Therefore, the development of straightforward methods that allow rapid construction of these scaffolds remains challenge.[2]

    Figure 1

    Figure 1.  Structures of functional and bioactive pyrimido- [1, 6-a]-indol-1(2H)-ones

    Organofluorine chemistry is a rapidly evolving research field. The omnipresence of fluorinated compounds has been extensively studied in the fields of pharmaceutical industry and agrochemistry.[3] Incorporation of fluorine and other fluorine-containing moieties into a molecule can alter its physicochemical and biological properties.[4] Introducing fluorine-containing moieties into lead compounds has become an effective strategy for structural optimization. Traditionally, fluorine-containing molecules are synthesized with toxic reagents, such as diethylaminosulfur trifluoride or sulfur tetrafluoride.[5] Meanwhile, these methodologies require harsh conditions, and suffer from narrow substrate scope. Due to the wide availability, fluoroalkyl bromides have become important building blocks in the fluoroalkylation reactions with high efficiency and practicability.[6] In 2014, Zhang and co-workers developed highly selective gem-difluoroallylation (α/γ up to > 37:1) of aryl boronic acids using 3-bromo-3, 3- difluoropropene (BDFP) via Pd(0) catalyst.[7] This methodology provides an efficient approach for the synthesis of fluorinated building blocks and bioactive molecules. However, the direct 3, 3-difluoroallylation of C—H bonds with BDFP is rare. To date, only few methods have been developed in the area of 3, 3-difluoroallylation of C—H bonds. For instance, our group has developed 8-amino- quinoline-aided Pd-catalyzed C—H 3, 3-difluoroallylation of benzamides (Scheme 1a).[8] Recently, Zhang et al.[9] reported a Mn(Ⅰ)-catalyzed 3, 3-difluoroallylation of 2- pyridones and indoles with BDFP (Scheme 1b). There is still a pressing need for the development of novel directing groups in order to achieve the 3, 3-difluoroallylated arenes. We chose N-ethoxycarbamoyl as the directing group for 3, 3-difluoroallylation for two reasons: (i) The N-ethoxy- carbamoyl directing group has been proved to be crucial for Ru- and Rh-catalyzed redox-neutral annulations and alkenylations in our previous reports.[10] (ii) The NH of N-ethoxycarbamoyl directing group provides the possibility for subsequent cyclization reactions. Considering the construction of 3, 4-dihydropyrimido[1, 6-a]-indol-1(2H)- one analogues needs several steps: Henry reaction of 1H-indole-2-carbaldehyde derivatives with nitroalkanes followed by reduction and cyclization (Scheme 1c), [1d] the development of facile strategies for their synthesis, especially for fluorinated 3, 4-dihydropyrimido[1, 6-a]-indol- 1(2H)-one derivatives, would be valuable. Herein, we have developed a Rh(Ⅲ)-catalyzed direct functionalization of C—H bonds of N-ethoxycarbamoyl indoles with 3-bromo- 3, 3-difluoroprop-1-ene for the access of 3, 3-difluoroal- lylated indole derivatives (Scheme 1d). Meanwhile, sequential cyclization of these 3, 3-difluoroallylated indole derivatives with N-iodosuccinimide (NIS) could deliver novel fluorinated 3, 4-dihydropyrimido[1, 6-a]-indol-1(2H)- one scaffold, which will help in the search of new biologically active compounds and drug discovery.

    Scheme 1

    Scheme 1.  3, 3-Difluoroallylation of indoles via C—H activation

    Initially, the reaction of N-ethoxy-1H-indole-1-carbox- amide (1a) and 3-bromo-3, 3-difluoropropene (2a) in the presence of catalyst and base under 60 ℃ was examined (Table 1). To our delight, the desired product 3a was obtained in 31% yield with [RuCl2(p-cymene)]2 as the catalyst (Entry 1). Then Ir(Ⅲ) and Rh(Ⅲ) catalysts were investigated, and the desired product 3a was formed in 78% NMR yield with [RhCp*Cl2]2 as catalyst (Entries 2~3). For basic additives including organic and inorganic bases, NaOAc turned out to be optimal (Entries 3~9). Subsequently, screening other solvents, such as dioxane, tetrahydrofuran (THF) and alcohols, indicated EtOH to be the optimal solvent for this reaction giving 3a at 75% isolated yield (Entries 10~14). Increasing the reaction temperature to 80 ℃ led to a significantly lower yield of 3a (Entries 14~15). Decreasing the amounts of 2a, NaOAc or the catalyst loading led to the formation of 3a in lower yields (Entries 16~18). Furthermore, control experiments indicated that the difluoroallylation hardly proceeded in the absence of either catalyst or base (Entries 19~20). It should be mentioned that this reaction could be successfully conducted under air to afford 3a in 79% yield (Entry 21).

    Table 1

    Table 1.  Optimization of reaction conditionsa
    下载: 导出CSV
    Entry Cat. Base Solvent Yieldb/%
    1 [RuCl2(p-cymene)]2 NaOAc MeOH 31
    2 [IrCp*Cl2]2 NaOAc MeOH NRc
    3 [RhCp*Cl2]2 NaOAc MeOH 78
    4 [RhCp*Cl2]2 KOAc MeOH 75
    5 [RhCp*Cl2]2 EtONa MeOH 50
    6 [RhCp*Cl2]2 CsF MeOH 24
    7 [RhCp*Cl2]2 Et3N MeOH 60
    8 [RhCp*Cl2]2 DIPEA MeOH 74
    9 [RhCp*Cl2]2 NaOTf MeOH NR
    10 [RhCp*Cl2]2 NaOAc THF 70
    11 [RhCp*Cl2]2 NaOAc Dioxane 58
    12 [RhCp*Cl2]2 NaOAc DME 60
    13 [RhCp*Cl2]2 NaOAc TFE 60
    14 [RhCp*Cl2]2 NaOAc EtOH 82 (75)
    15d [RhCp*Cl2]2 NaOAc EtOH 56
    16e [RhCp*Cl2]2 NaOAc EtOH 79
    17f [RhCp*Cl2]2 NaOAc EtOH 69
    18g [RhCp*Cl2]2 NaOAc EtOH 68
    19 [RhCp*Cl2]2 EtOH NR
    20 NaOAc EtOH NR
    21h [RhCp*Cl2]2 NaOAc EtOH 79
    a Reaction conditions: 1a (0.3 mmol, 1.0 equiv.), 2a (0.9 mmol, 3.0 equiv.), catalyst (10 mol%), base (2.0 equiv.), solvents (2.0 mL), a sealed tube at 60 ℃ (oil bath) for 24 h under argon. b Determined by 19F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield. c No reaction. d 80 ℃ (oil bath). e 2.5 equiv. 2a was used. f 5 mol% catalyst was used. g 1.5 equiv. NaOAc was used. h Under Air.

    After establishing the optimal reaction conditions, it is crucial to examine the scope of indoles (Table 2). N-ethoxycarbamoyl (EtONHCO) protected 3-methylin- dole (1b) and ethyl 3-indoleacetate (1c) gave the corresponding products in good yields. Various electron- donating and electron-withdrawing substituents including methyl (3d, 3g and 3m), ethyl (3r), methoxy (3e and 3n), ethoxy (3o), trifluoromethyl (3l) and ester (3k) at the 4-, 5-, 6-, and 7-position on benzene ring of indoles were tolerated in this reaction, affording the desired products in moderate to excellent yields (55%~94%). Meanwhile, halogen groups (3f, 3h~3j and 3p~3q) at benzene ring of indoles were well-tolerant to afford desired products in moderate yields (61%~80%). In addition, several disubstituted indoles (1s~1w) proved to be competent substrates, furnishing the desired corresponding products in yields ranging from 69% to 93%. Indoles with aliphatic ring (1y) and pyrrole-1-carboxamide (1aa) were also applicable in this reaction, affording 3y and 3aa in 30% and 40% yields, respectively. Unfortunately, no corresponding product was obtained and starting materials were recovered when using N-ethoxy-1H-pyrrolo[2, 3-b]pyridine-1-carbox- amide (1z) as the substrate. The influence of directing groups was investigated, and indole bearing N-methoxy- carbamoyl, N-tert-butoxycarbamoyl and N-benzyloxy- carbamoyl groups gave the product 3 in 60%, 23% and 78% yields, respectively. The low yield of the N-tert-but- oxycarbamoyl group case is probably due to the steric reasons. Disappointingly, substituted BDFPs 2b and 2c failed to give the desired product under the optimal conditions. Most starting materials 2b and 2c were recovered and no desired product was detected.

    Table 2

    Table 2.  Scope of indolesa
    下载: 导出CSV
    a Reaction conditions: 1 (0.3 mmol, 1.0 equiv.), 2 (0.9 mmol, 3.0 equiv.), [RhCp*Cl2]2 (10 mol %) and NaOAc (2.0 equiv.) in EtOH (2.0 mL) at 60 ℃ (oil bath) for 24 h under argon. All listed yields are isolated ones.

    Notably, a NIS-mediated intramolecular cyclization of these 3, 3-difluoroallylated indole derivatives 3 was performed to afford novel fluorinated 3, 4-dihydropyrimido- [1, 6-a]-indol-1(2H)-one scaffold 4 (Scheme 2).[11] For instance, the 3, 3-difluoroallylated indoles derived from 3-methylindole and 3-methylindoles with halogens could proceed efficiently to generate novel fluorinated 3, 4-dihy- dropyrimido[1, 6-a]-indol-1(2H)-ones (4b and 4t~4w) in moderate to good yields. 3, 3-difluoroallylated indole with methoxy (3x) was applicable in this reaction as well, but affording 4x in lower yield (23%). Since the wide application of fluorine-containing compounds in pharmaceutical, these fluorinated 3, 4-dihydropyrimido[1, 6-a]-indol-1(2H)- ones would have significant potential for drug discovery. Meanwhile, these iodo-fluoroalkanes 4 could also serve as difluoroalkyl radical precursors for the preparation of complex fluorine-containing molecules in the presence of radical initiators.

    Scheme 2

    Scheme 2.  NIS-mediated intramolecular cyclization of 3

    Additionally, in order to prove the potential for practical application, the gram-scale reaction was conducted (Scheme 3). To our delight, the efficiency was maintained (65% yield, for gram-scale reaction). To evaluate the efficiency and potential for the synthetic utility of the method, derivatization of the representative product 3a has been performed. The hydrogenative reduction of 3a furnished 5a in 85% yield, which provides a strategy for the synthesis of novel terminally difluoroalkane derivatives without using toxic reagents such as diethylaminosulfur trifluoride. Interestingly, fluorinated 3, 4-dihydropyrimido[1, 6-a]-in- dol-1(2H)-ones (4u) could undergo deiodination in present of AIBN and Bu3SnH, furnishing 6u in good yield (78%).

    Scheme 3

    Scheme 3.  Gram-scale reaction and derivatization

    To clarify the possible mechanism of this reaction, a series of control experiments were performed. Two independent reactions using 1a and 1a-D gave a KIE value of 1.24 indicating that the step of the C—H bond cleavage was unlikely involved in the rate-limiting step (Scheme 4a). Further, to investigate the electronic effects of this reaction, two competitive experiments between 4-F/4-OMe and 5-CF3/5-Me substituted indoles were conducted, respectively. 1H NMR analysis of the product mixture indicated a slight preference of C−H activation for the more electron poor substrate (Scheme 4b). Despite the failure in isolation of a cyclometalated rhodium complex, the formation of the rhodacyle 7 was confirmed by HRMS analysis (Scheme 4c).

    Scheme 4

    Scheme 4.  Mechanistic investigations

    Based on the preliminary mechanistic experiments and previous studies[10c~10e], a plausible catalytic cycle was proposed (Scheme 5). The first step is the formation of an active catalyst through anion exchange with sodium acetate. Next, the coordination of 1a and subsequent C—H bond cleavage of 1a occurs to produce a five-membered rhodacycle A. Then, rhodacycle A is coordinated and inserted with 2a to form a seven-membered rhodacycle intermediate C. Finally, C produces the desired product 3a via β-bromo elimination and regenerates the active rhodium species.

    Scheme 5

    Scheme 5.  Proposed mechanism

    An efficient synthetic strategy for the rapid establishment of 3, 3-difluoroallylated indole derivatives via Rh(Ⅲ)-catalyzed C—H bond activation has been developed. This strategy featured broad synthetic generality, unique versatility and high efficiency. In addition, NIS- mediated intramolecular cyclization of these 3, 3-difluoro- allylated indole derivatives 3 was performed to afford novel fluorinated 3, 4-dihydropyrimido[1, 6-a]-indol-1(2H)- one scaffold 4, which provided a potential tool for the construction of fluorine-containing heterocycles for drug discovery.

    Analytical thin layer chromatography (TLC) was HSGF 254 (0.15~0.2 mm thickness). Preparative thin layer chromatography (PTLC) was HSGF 254 (0.4~0.5 mm thickness). All products were characterized by their NMR and MS spectra. 1H NMR and 13C NMR spectra were recorded on a 400 MHz, 500 MHz or 600 MHz instrument. Chemical shifts were reported downfield from tetramethylsilane. High-resolution mass spectra (HRMS) were measured on a Micromass Ultra Q-TOF spectrometer. Other reagents (chemicals) were purchased from Alfa Aesar, Acros organics, TCI, J & K Chemicals, Energy Chemical and Adamas and used without further purification. Substrates 1a~1e[10c], 1g~1o[10c~10e], 1q~1s[10c~10e] and 1aa~1da[10c, 10d, 12a] were known compounds and all of them were prepared according to literature[10c~10e, 12a]. Substrates 1f, 1p and 1t~1z were new compounds and prepared according to literature[12b]. Substrates 2b[7] and 2c[13] were known compounds and all of them were prepared according to literature.

    To a 100 mL round bottle charged with a stirring bar was added EtONH2•HCl (80.0 mmol) and 20 mL tetrahydrofuran (THF). To the system was then added sodium hydroxide (powder, 1.0 equiv.). The system was then stirred at room temperature for about 3 h until the system became clear. To a 100 mL round bottle charged with stirring bar, were added indole (5.0 mmol, 1.0 equiv.), 1, 1'-carbonyldiimidazole (CDI, 7.5 mmol, 1.5 equiv.) and 4-dimethylaminepyridine (DMAP, 5 mol%). Then 20 mL of anhydrous acetonitrile was added to bottle under Ar. The system was refluxed at 85 ℃ (oil bath) overnight under Ar. After cooled to room temperature, the freshly prepared EtONH2 solution (4 mol/L in THF, 2.0 equiv.) was added and then stirred at 80 ℃ (oil bath) for another 6~12 h. After cooled to room temperature, the solvents were removed under reduced pressure. The residue was subject to column chromatography on silica gel (hexanes/EtOAc, V/V=20/1~4/1) to afford the corresponding N-carbamoyl indoles.

    N-Ethoxy-4-fluoro-1H-indole-1-carboxamide (1f): Whi- te solid, 700 mg, 43% yield. m.p. 83~84 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.44 (s, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.40 (d, J=3.7 Hz, 1H), 7.29~7.19 (m, 1H), 6.92 (dd, J=9.7, 8.0 Hz, 1H), 6.72 (dd, J=3.8, 0.7 Hz, 1H), 4.09 (d, J=7.1 Hz, 2H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.1 (d, J=248.4 Hz), 153.2, 137.5 (d, J=9.5 Hz), 125.5 (d, J=7.4 Hz), 123.6, 119.1 (d, J=22.3 Hz), 110.8 (d, J=3.8 Hz), 108.2 (d, J=18.6 Hz), 103.9, 72.9, 13.6; 19F NMR (471 MHz, Chloroform-d) δ: -121.52 (dd, J=9.4, 5.4 Hz). HRMS (ESI) calcd for C11H10FN2O2 [M-H]- 221.0732, found 221.0727.

    6-Chloro-N-ethoxy-1H-indole-1-carboxamide (1p): White solid, 850 mg, 54% yield. m.p. 103~105℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.38 (s, 1H), 8.18 (d, J=1.9 Hz, 1H), 7.46 (d, J=8.4 Hz, 1H), 7.38 (d, J=3.7 Hz, 1H), 7.20 (dd, J=8.3, 1.9 Hz, 1H), 6.58 (d, J=3.7 Hz, 1H), 4.08 (q, J=7.0 Hz, 2H), 1.32 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 153.1, 135.8, 130.7, 128.5, 124.0, 123.7, 121.9, 115.1, 108.2, 72.9, 13.6. HRMS (ESI) calcd for C11H10ClN2O2 [M-H]- 237.0436, found 237.0429.

    4-Bromo-N-ethoxy-3-methyl-1H-indole-1-carboxamide (1t): White solid, 1.1 g, 39% yield. m.p. 137~138 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.39 (s, 1H), 8.11 (dd, J=8.4, 0.9 Hz, 1H), 7.35 (dd, J=7.8, 0.9 Hz, 1H), 7.13 (q, J=1.3 Hz, 1H), 7.09 (t, J=8.1 Hz, 1H), 4.06 (q, J=7.0 Hz, 2H), 2.46 (d, J=1.4 Hz, 3H), 1.32 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 153.0, 137.2, 128.7, 127.2, 125.6, 122.1, 118.5, 114.9, 114.2, 72.8, 13.6, 13.0. HRMS (ESI) calcd for C12H12BrN2O2 [M-H]- 295.0088, found 295.0082.

    N-Ethoxy-5-fluoro-3-methyl-1H-indole-1-carboxamide (1u): White solid, 880 mg, 56% yield. m.p. 122~124 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.18 (s, 1H), 8.09 (dd, J=9.0, 4.5 Hz, 1H), 7.17 (d, J=1.5 Hz, 1H), 7.13 (dd, J=8.7, 2.6 Hz, 1H), 7.04 (td, J=9.0, 2.6 Hz, 1H), 4.06 (q, J=7.0 Hz, 2H), 2.21 (d, J=1.3 Hz, 3H), 1.32 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 159.4 (d, J=239.5 Hz), 153.3, 132.2, 131.9 (d, J=9.5 Hz), 121.8, 117.6 (d, J=4.1 Hz), 116.0 (d, J=9.1 Hz), 112.6 (d, J=25.1 Hz), 104.8 (d, J=23.5 Hz), 72.8, 13.6, 9.7; 19F NMR (471 MHz, Chloroform-d) δ: -120.52 (td, J=9.4, 4.9 Hz). HRMS (ESI) calcd for C12H12FN2O2 [M-H]- 235.0888, found 235.0884.

    5-Bromo-N-ethoxy-3-methyl-1H-indole-1-carboxamide (1v): White solid, 1.3 g, 46% yield. m.p. 155~156 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.13 (s, 1H), 8.01 (d, J=8.8 Hz, 1H), 7.62 (d, J=1.9 Hz, 1H), 7.40 (dd, J=8.7, 2.0 Hz, 1H), 7.13 (d, J=1.5 Hz, 1H), 4.07 (q, J=7.1 Hz, 2H), 2.22 (d, J=1.3 Hz, 3H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 153.2, 134.5, 132.6, 127.7, 122.1, 121.4, 117.1, 116.4, 116.1, 72.8, 13.6, 9.7. HRMS (ESI) calcd for C12H12BrN2O2 [M-H]- 295.0088, found 295.0085.

    6-Bromo-N-ethoxy-3-methyl-1H-indole-1-carboxamide (1w): White solid, 1.1 g, 43% yield. m.p. 97~98 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.33 (s, 1H), 8.19 (s, 1H), 7.35 (dd, J=8.4, 1.6 Hz, 1H), 7.33 (d, J=8.4 Hz, 1H), 7.10 (d, J=1.5 Hz, 1H), 4.07 (q, J=7.0 Hz, 2H), 2.23 (d, J=1.3 Hz, 3H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 153.1, 136.4, 129.7, 126.0, 120.8, 120.3, 118.6, 118.1, 117.7, 72.9, 13.6, 9.7. HRMS (ESI) calcd for C12H12BrN2O2 [M-H]- 295.0088, found 295.0081.

    N-Ethoxy-5-methoxy-3-methyl-1H-indole-1-carboxamide (1x): White solid, 800 mg, 47% yield. m.p. 147~148 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.29 (s, 1H), 8.03~7.97 (m, 1H), 7.13 (d, J=1.5 Hz, 1H), 6.95~6.85 (m, 2H), 4.05 (q, J=7.0 Hz, 2H), 3.85 (s, 3H), 2.20 (d, J=1.4 Hz, 3H), 1.31 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.0, 153.6, 131.8, 130.4, 121.1, 117.4, 115.7, 113.3, 102.0, 72.6, 55.9, 13.6, 9.8. HRMS (ESI) calcd for C13H17N2O3 [M+H]+ 249.1234, found 249.1236.

    N-Ethoxy-5-(pyrrolidin-1-yl)-1H-indole-1-carboxamide (1y): White solid, 570 mg, 39% yield. m.p. 122~124 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.27 (s, 1H), 7.91 (d, J=8.9 Hz, 1H), 7.35 (d, J=3.6 Hz, 1H), 6.68 (s, 1H), 6.66 (dd, J=8.9, 2.4 Hz, 1H), 6.47 (d, J=3.7 Hz, 1H), 4.06 (q, J=7.0 Hz, 2H), 3.30 (t, J=6.4 Hz, 4H), 2.04~2.00 (m, 4H), 1.32 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 153.7, 144.9, 131.5, 127.4, 124.0, 115.1, 111.1, 108.1, 102.4, 72.6, 48.5, 25.5, 13.7. HRMS (ESI) calcd for C15H20N3O2 [M+H]+ 274.155, found 274.1528.

    N-Ethoxy-1H-pyrrolo[2, 3-b]pyridine-1-carboxamide (1z): Oil, 930 mg, 54% yield. 1H NMR (400 MHz, Chloroform-d) δ: 12.12 (s, 1H), 8.27 (dd, J=4.9, 1.5 Hz, 1H), 7.94~7.88 (m, 2H), 7.17 (dd, J=7.8, 4.9 Hz, 1H), 6.54 (d, J=4.0 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 1.36 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ: 151.6, 146.1, 142.6, 130.3, 125.8, 123.4, 118.3, 104.0, 72.9, 13.6. HRMS (ESI) calcd for C10H12N3O2 [M+H]+ 206.0924, found 206.0923.

    To a reaction tube were added N-ethoxy-1H-indole-1- carboxamide (1) (0.3 mmol), 3-bromo-3, 3-difluoroprop- 1-ene (2) (139 mg, 0.9 mmol), [RhCp*Cl2]2 (18 mg, 10 mol%), NaOAc (48 mg, 0.6 mmol), and then the reaction tube was evacuated and purged with Ar three times. Ethanol absolute (2.0 mL) was added to the tube through syringe. The solution was kept at 60 ℃ (oil bath) for 24 h under Ar. After cooled to room temperature, the reaction mixture was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography (hexanes/EtOAc, V/V=20/1~10/1) to give a corresponding product 3.

    2-(3, 3-Difluoroallyl)-N-ethoxy-1H-indole-1-carboxamide (3a): White solid, 62 mg, 75% yield. m.p. 98~100 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 7.66 (d, J=8.5 Hz, 1H), 7.51 (d, J=7.6 Hz, 1H), 7.24 (dd, J=8.3, 1.3 Hz, 1H), 7.19 (td, J=7.5, 1.1 Hz, 1H), 6.43 (s, 1H), 4.54 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 4.17 (q, J=7.0 Hz, 2H), 3.67 (dq, J=7.8, 1.5 Hz, 2H), 1.39 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.1 (dd, J=289.3, 286.4 Hz), 152.9, 139.8~138.1 (m), 135.4, 129.3, 123.5, 122.6, 121.0, 112.3, 106.5, 75.8 (dd, J=25.0, 19.2 Hz), 73.0, 22.3 (d, J=5.6 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.39 (d, J=42.1 Hz), -89.59 (dd, J=42.1, 24.7 Hz). HRMS (ESI) calcd for C14H13F2N2O2 [M-H]- 279.0951, found 279.0946.

    2-(3, 3-Difluoroallyl)-N-ethoxy-3-methyl-1H-indole-1- carboxamide (3b): Yellow solid, 61 mg, 69% yield. m.p. 101~103 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.17 (s, 1H), 7.64 (d, J=8.1 Hz, 1H), 7.48 (d, J=7.8 Hz, 1H), 7.24 (dd, J=8.1, 1.3 Hz, 1H), 7.21 (t, J=7.2 Hz, 1H), 4.54 (dtd, J=25.5, 7.7, 2.2 Hz, 1H), 4.16 (q, J=7.0 Hz, 2H), 3.62 (dt, J=7.6, 1.8 Hz, 2H), 2.23 (s, 3H), 1.39 (t, J=7.1 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 156.6 (dd, J=288.3, 286.7 Hz), 153.0, 134.4, 133.9, 130.6, 123.7, 122.3, 119.2, 114.2, 112.2, 76.8 (dd, J=23.5, 18.9 Hz), 73.0, 19.5 (d, J=5.3 Hz), 13.7, 8.5; 19F NMR (471 MHz, Chloroform-d) δ: -88.72 (d, J=44.5 Hz), -89.65 (dd, J=44.6, 25.3 Hz). HRMS (ESI) calcd for C15H15F2N2O2 [M-H]- 293.1107, found 293.1103.

    Ethyl 2-(2-(3, 3-difluoroallyl)-1-(ethoxycarbamoyl)-1H- indol-3-yl)acetate (3c): White solid, 92 mg, 84% yield. m.p. 123~124 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.32 (s, 1H), 7.64 (d, J=8.1 Hz, 1H), 7.53 (d, J=8.0 Hz, 1H), 7.29~7.22 (m, 1H), 7.24~7.17 (m, 1H), 4.55 (dtd, J=25.3, 7.6, 2.1 Hz, 1H), 4.20~4.12 (m, 2H), 4.16~4.08 (m, 2H), 3.68 (s, 2H), 3.66 (dt, J=7.7, 1.8 Hz, 2H), 1.38 (t, J=7.0 Hz, 3H), 1.23 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 171.1, 156.6 (dd, J=288.5, 286.8 Hz), 152.5, 135.7~135.6 (m), 134.6, 129.4, 124.0, 122.6, 119.4, 112.2, 111.4, 77.1~75.6 (m), 73.0, 61.2, 30.1, 19.5 (d, J=5.5 Hz), 14.3, 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -88.26 (d, J=43.4 Hz), -89.21 (dd, J=43.7, 25.3 Hz). HRMS (ESI) calcd for C18H19F2N2O4 [M-H]- 365.1318, found 365.1316.

    2-(3, 3-Difluoroallyl)-N-ethoxy-4-methyl-1H-indole-1-carboxamide (3d): Yellow solid, 62 mg, 71% yield. m.p. 103~104 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.25 (s, 1H), 7.46 (d, J=8.3 Hz, 1H), 7.16~7.09 (m, 1H), 6.95~7.00 (m, 1H), 6.45~6.40 (m, 1H), 4.55 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 3.65 (dq, J=7.9, 1.5 Hz, 2H), 2.48 (s, 3H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.1 (dd, J=288.8, 286.4 Hz), 152.9, 138.5 (t, J=2.7 Hz), 135.1, 130.5, 128.9, 123.6, 123.0, 109.8, 104.9, 75.9 (dd, J=24.9, 19.2 Hz), 73.0, 22.3 (d, J=5.5 Hz), 18.6, 13.7; 19F NMR (376 MHz, Chloroform-d) δ: -87.37 (d, J=42.3 Hz), -89.67 (dd, J=42.2, 24.9 Hz). HRMS (ESI) calcd for C15H15F2- N2O2 [M-H]- 293.1107, found 293.1101.

    2-(3, 3-Difluoroallyl)-N-ethoxy-4-methoxy-1H-indole-1-carboxamide (3e): Yellow solid, 78 mg, 84% yield. m.p. 97~99 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.26 (s, 1H), 7.25 (d, J=8.3 Hz, 1H), 7.16 (t, J=8.1 Hz, 1H), 6.62 (d, J=7.9 Hz, 1H), 6.53 (s, 1H), 4.53 (dtd, J=24.7, 7.9, 2.0 Hz, 1H), 4.16 (q, J=7.0 Hz, 2H), 3.92 (s, 3H), 3.64 (dq, J=7.9, 1.5 Hz, 2H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.1 (dd, J=289.3, 286.1 Hz), 153.1, 152.8, 137.7~137.4 (m), 136.6, 124.5, 119.5, 105.4, 103.4, 102.8, 75.8 (dd, J=25.0, 19.3 Hz), 73.0, 55.6, 22.3 (d, J=5.5 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.51 (d, J=42.5 Hz), -89.78 (dd, J=42.5, 24.6 Hz). HRMS (ESI) calcd for C15H15F2N2O3 [M-H]- 309.1056, found 309.1050.

    2-(3, 3-Difluoroallyl)-N-ethoxy-4-fluoro-1H-indole-1-carboxamide (3f): Yellow solid, 64 mg, 71% yield. m.p. 126~127 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.35 (s, 1H), 7.41 (d, J=8.4 Hz, 1H), 7.14 (td, J=8.2, 5.3 Hz, 1H), 6.85 (dd, J=9.5, 8.0 Hz, 1H), 6.50 (s, 1H), 4.51 (dtd, J=24.6, 7.8, 1.9 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 3.62 (dq, J=7.8, 1.5 Hz, 2H), 1.37 (t, J=7.0 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 157.2 (dd, J=289.6, 286.7 Hz), 155.9 (d, J=248.3 Hz), 152.4, 139.0, 137.7 (d, J=10.1 Hz), 124.2 (d, J=7.6 Hz), 118.1 (d, J=22.6 Hz), 108.3 (d, J=3.7 Hz), 107.8 (d, J=18.8 Hz), 101.9, 75.5 (dd, J=25.4, 19.2 Hz), 73.1, 22.2 (d, J=5.4 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -86.95 (d, J=40.1 Hz), -89.20 (dd, J=41.0, 24.8 Hz), -121.46~-121.55 (m). HRMS (ESI) calcd for C14H12F3N2O2 [M-H]- 297.0856, found 297.0854.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-methyl-1H-indole-1-carboxamide (3g):Yellow solid, 61 mg, 70% yield. m.p. 85~86 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.25 (s, 1H), 7.51 (d, J=8.4 Hz, 1H), 7.27 (s, 1H), 7.03 (dd, J=8.5, 1.7 Hz, 1H), 6.34 (s, 1H), 4.53 (dtd, J=24.8, 7.8, 2.0 Hz, 1H), 4.15 (q, J=7.1 Hz, 2H), 3.64 (dq, J=7.8, 1.5 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 157.0 (dd, J=289.2, 286.2 Hz), 153.1, 139.2 (t, J=2.9 Hz) 133.5, 132.2, 129.6, 124.8, 120.8, 112.1, 106.3, 75.9 (dd, J=24.9, 19.2 Hz), 72.9, 22.4 (d, J=5.4 Hz), 21.3, 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.54 (d, J=42.9 Hz), -89.75 (dd, J=42.3, 24.4 Hz). HRMS (ESI) calcd for C15H15F2N2O2 [M-H]- 293.1107, found 293.1099.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-fluoro-1H-indole-1-carboxamide (3h): White solid, 64 mg, 71% yield. m.p. 109~111 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.20 (s, 1H), 7.58 (dd, J=9.0, 4.3 Hz, 1H), 7.14 (dd, J=8.7, 2.6 Hz, 1H), 6.95 (td, J=9.0, 2.6 Hz, 1H), 6.38 (s, 1H), 4.51 (dtd, J=24.6, 7.8, 2.0 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 3.63 (dq, J=8.0, 1.5 Hz, 2H), 1.38 (t, J=7.0 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ: 159.2 (d, J=239.1 Hz), 157.2 (dd, J=289.5, 286.6 Hz), 152.7, 140.7, 131.9, 130.1 (d, J=10.0 Hz), 113.3 (d, J=9.3 Hz), 111.3 (d, J=25.6 Hz), 106.5 (d, J=3.9 Hz), 106.3 (d, J=23.8 Hz), 75.6 (dd, J=25.3, 19.3 Hz), 73.1, 22.3 (d, J=5.4 Hz), 13.7. 19F NMR (376 MHz, Chloroform-d) δ: -86.97 (d, J=41.8 Hz), -89.24 (dd, J=42.2, 24.9 Hz), -121.05 (td, J=9.4, 4.5 Hz). HRMS (ESI) calcd for C14H12F3N2O2 [M-H]- 297.0856, found 297.0854.

    5-Chloro-2-(3, 3-difluoroallyl)-N-ethoxy-1H-indole-1-carboxamide (3i): Yellow solid, 63 mg, 67% yield. m.p. 116~118 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.22 (s, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.45 (d, J=2.1 Hz, 1H), 7.17 (dd, J=8.8, 2.1 Hz, 1H), 6.36 (s, 1H), 4.51 (dtd, J=24.6, 7.8, 1.9 Hz, 1H), 4.14 (q, J=7.0 Hz, 2H), 3.62 (dq, J=7.8, 1.6 Hz, 2H), 1.37 (t, J=7.0 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 157.1 (dd, J=289.6, 286.8 Hz), 152.5, 140.4 (t, J=2.8 Hz), 133.8, 130.4, 128.3, 123.6, 120.4, 113.3, 106.0, 75.5 (dd, J=25.4, 19.2 Hz), 73.1, 22.2 (d, J=5.4 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -86.91 (d, J=41.4 Hz), -89.17 (dd, J=41.3, 24.4 Hz). HRMS (ESI) calcd for C14H12ClF2N2O2 [M-H]- 313.0561, found 313.0566.

    5-Bromo-2-(3, 3-difluoroallyl)-N-ethoxy-1H-indole-1-carboxamide (3j): White solid, 66 mg, 61% yield. m.p. 118~119 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.20 (s, 1H), 7.61 (d, J=2.0 Hz, 1H), 7.51 (d, J=8.8 Hz, 1H), 7.31 (dd, J=8.8, 2.0 Hz, 1H), 6.36 (s, 1H), 4.51 (dtd, J=24.6, 7.8, 1.9 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 3.63 (d, J=7.7 Hz, 2H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 157.2 (dd, J=289.6, 286.9 Hz), 152.4, 140.3~139.8 (m), 134.2, 130.9, 126.3, 123.5, 115.8, 113.7, 105.8, 75.5 (dd, J=25.5, 19.2 Hz), 73.1, 22.2 (d, J=5.5 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -86.88 (d, J=40.4 Hz), -89.13 (dd, J=41.1, 24.3 Hz). HRMS (ESI) calcd for C14H12BrF2N2O2 [M-H]- 357.0056, found 357.0050.

    Methyl 2-(3, 3-difluoroallyl)-1-(ethoxycarbamoyl)-1H- indole-5-carboxylate (3k): White solid, 70 mg, 69% yield. m.p. 138~140 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.53 (s, 1H), 8.14 (d, J=1.7 Hz, 1H), 7.84 (dd, J=8.7, 1.7 Hz, 1H), 7.61 (d, J=8.7 Hz, 1H), 6.46 (s, 1H), 4.51 (dtd, J=24.5, 7.8, 1.9 Hz, 1H), 4.18 (q, J=7.0 Hz, 2H), 3.89 (s, 3H), 3.63 (dq, J=7.9, 1.5 Hz, 2H), 1.39 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 167.6, 157.2 (dd, J=289.7, 286.9 Hz), 152.1, 140.8~139.5 (m), 138.1, 128.7, 124.8, 124.4, 123.1, 111.9, 106.8, 75.4 (dd, J=25.4, 19.3 Hz), 73.1, 52.2, 22.1 (d, J=5.6 Hz), 13.7; 19F NMR (376 MHz, Chloroform-d) δ: -86.82 (d, J=40.6 Hz), -89.06 (dd, J=41.1, 24.5 Hz). HRMS (ESI) calcd for C16H15F2N2O4 [M-H]- 337.1005, found 337.1010.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-(trifluoromethyl)-1H- indole-1-carboxamide (3l): Yellow solid, 57 mg, 55% yield. m.p. 105~106 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.29 (s, 1H), 7.78 (s, 1H), 7.72 (d, J=8.7 Hz, 1H), 7.47 (dd, J=8.7, 1.8 Hz, 1H), 6.49 (s, 1H), 4.51 (dtd, J=24.5, 7.8, 1.9 Hz, 1H), 4.16 (q, J=7.0 Hz, 2H), 3.65 (dq, J=7.8, 1.6 Hz, 2H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.2 (dd, J=289.8, 287.0 Hz), 152.1, 140.7 (t, J=2.9 Hz), 137.0, 128.8, 125.1 (q, J=32.3 Hz), 124.8 (q, J=271.8 Hz), 120.3 (q, J=3.6 Hz), 118.3 (q, J=4.1 Hz), 112.5, 106.6, 75.4 (dd, J=25.5, 19.2 Hz), 73.2, 22.1 (d, J=5.6 Hz), 13.7; 19F NMR (376 MHz, Chloroform-d) δ: -61.01, -86.63 (d, J=40.7 Hz), -88.88 (dd, J=40.8, 24.5 Hz). HRMS (ESI) calcd for C15H12F5N2O2 [M-H]- 347.0824, found 347.0822.

    2-(3, 3-Difluoroallyl)-N-ethoxy-6-methyl-1H-indole-1-carboxamide (3m): White solid, 68 mg, 77% yield. m.p. 85~87 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 7.44 (s, 1H), 7.37 (d, J=7.9 Hz, 1H), 7.01 (d, J=7.9 Hz, 1H), 6.36 (s, 1H), 4.52 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 4.17 (q, J=7.0 Hz, 2H), 3.63 (dq, J=7.8, 1.5 Hz, 2H), 2.46 (s, 3H), 1.39 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.1 (dd, J=289.2, 286.2 Hz), 152.9, 138.6~138.0 (m), 135.8, 133.5, 127.0, 124.1, 120.5, 112.5, 106.4, 75.9 (dd, J=25.0, 19.1 Hz), 73.0, 22.3 (d, J=5.4 Hz), 22.1, 13.7; 19F NMR (376 MHz, Chloroform-d) δ: -87.50 (d, J=42.5 Hz), -89.68 (dd, J=42.3, 24.9 Hz). HRMS (ESI) calcd for C15H15F2N2O2 [M-H]- 293.1107, found 293.1108.

    2-(3, 3-Difluoroallyl)-N-ethoxy-6-methoxy-1H-indole-1-carboxamide (3n): Yellow solid, 87 mg, 94% yield. m.p. 78~79 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 7.35 (d, J=8.6 Hz, 1H), 7.21 (d, J=2.2 Hz, 1H), 6.81 (dd, J=8.6, 2.3 Hz, 1H), 6.32 (s, 1H), 4.50 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 4.14 (q, J=7.0 Hz, 2H), 3.82 (s, 3H), 3.59 (dq, J=7.8, 1.5 Hz, 2H), 1.38 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.2, 157.0 (dd, J=289.2, 286.4 Hz), 153.0, 137.7~137.2 (m), 136.4, 123.2, 121.3, 110.9, 106.3, 97.9, 75.9 (dd, J=24.9, 19.1 Hz), 73.0, 55.9, 22.3 (d, J=5.4 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.50 (d, J=42.9 Hz), -89.69 (dd, J=42.6, 25.2 Hz). HRMS (ESI) calcd for C15H15F2N2O3 [M-H]- 309.1056, found 309.1051.

    2-(3, 3-Difluoroallyl)-N, 6-diethoxy-1H-indole-1-carbo-xamide (3o): White solid, 65 mg, 67% yield. m.p. 81~83 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 7.35 (d, J=8.5 Hz, 1H), 7.20 (d, J=2.2 Hz, 1H), 6.81 (dd, J=8.5, 2.2 Hz, 1H), 6.32 (s, 1H), 4.51 (dtd, J=24.8, 7.8, 2.1 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 4.03 (q, J=7.0 Hz, 2H), 3.60 (dq, J=7.8, 1.6 Hz, 2H), 1.42 (t, J=7.0 Hz, 3H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.0 (dd, J=289.3, 286.2 Hz), 156.5, 153.0, 138.9~137.3 (m), 136.3, 123.1, 121.3, 111.5, 106.3, 98.6, 75.9 (dd, J=24.8, 19.2 Hz), 73.0, 64.3, 22.3 (d, J=5.3 Hz), 15.0, 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.54 (d, J=42.6 Hz), -89.73 (dd, J=42.3, 24.7 Hz). HRMS (ESI) calcd for C16H17F2N2O3 [M-H]- 323.1213, found 323.1207.

    6-Chloro-2-(3, 3-difluoroallyl)-N-ethoxy-1H-indole-1-carboxamide (3p): Yellow solid, 75 mg, 79% yield. m.p. 98~99 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.20 (s, 1H), 7.65~7.63 (m, 1H), 7.39 (d, J=8.3 Hz, 1H), 7.15 (dd, J=8.3, 1.8 Hz, 1H), 6.39 (s, 1H), 4.51 (dtd, J=24.6, 7.8, 2.0 Hz, 1H), 4.17 (q, J=7.0 Hz, 2H), 3.62 (dq, J=7.8, 1.5 Hz, 2H), 1.39 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.2 (dd, J=289.5, 286.8 Hz), 152.4, 139.8~139.4 (m), 135.8, 129.4, 127.7, 123.2, 121.6, 112.6, 106.3, 75.5 (dd, J=25.3, 19.1 Hz), 73.2, 22.2 (d, J=5.6 Hz), 13.7; 19F NMR (376 MHz, Chloroform-d) δ: -86.91 (d, J=41.6 Hz), -89.18 (dd, J=41.7, 24.7 Hz). HRMS (ESI) calcd for C14H12ClF2N2O2 [M-H]- 313.0561, found 313.0557.

    2-(3, 3-Difluoroallyl)-N-ethoxy-7-fluoro-1H-indole-1-carboxamide (3q): Yellow solid, 72 mg, 80% yield. m.p. 86~88 ℃; 1H NMR (600 MHz, Chloroform-d) δ: 8.56 (s, 1H), 7.28 (d, J=7.7 Hz, 1H), 7.09 (td, J=7.9, 4.5 Hz, 1H), 6.95 (ddd, J=12.7, 8.0, 1.0 Hz, 1H), 6.46~6.38 (m, 1H), 4.51 (dtd, J=24.5, 7.8, 2.0 Hz, 1H), 4.14 (q, J=7.1 Hz, 2H), 3.57 (dq, J=7.8, 1.5 Hz, 2H), 1.35 (t, J=7.1 Hz, 3H); 13C NMR (151 MHz, Chloroform-d) δ: 157.1 (dd, J=289.7, 286.5 Hz), 151.3, 148.7 (d, J=244.0 Hz), 140.2, 132.6 (d, J=3.8 Hz), 122.8 (d, J=6.9 Hz), 116.7 (d, J=3.5 Hz), 109.6 (d, J=19.4 Hz), 105.8, 75.4 (dd, J=25.5, 19.2 Hz), 72.9, 21.5 (d, J=5.5 Hz), 13.6; 19F NMR (471 MHz, Chloroform-d) δ: -87.04 (d, J=41.1 Hz), -89.25 (dd, J=41.1, 24.7 Hz), -126.12. HRMS (ESI) calcd for C14H14F3N2O2 [M+H]+ 299.1002, found 299.1000.

    2-(3, 3-Difluoroallyl)-N-ethoxy-7-ethyl-1H-indole-1-car-boxamide (3r): Yellow solid, 64 mg, 69% yield. m.p. 86~88 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.21 (s, 1H), 7.36 (d, J=7.5 Hz, 1H), 7.13 (t, J=7.5 Hz, 1H), 7.08 (d, J=7.2 Hz, 1H), 6.36 (s, 1H), 4.50 (dtd, J=24.5, 7.7, 1.9 Hz, 1H), 4.21~4.04 (m, 2H), 3.48 (dq, J=7.7, 1.5 Hz, 2H), 2.89 (q, J=7.5 Hz, 2H), 1.38~1.28 (m, 6H); 13C NMR (126 MHz, Chloroform-d) δ: 157.0 (dd, J=289.3, 286.6 Hz), 138.0, 135.1, 129.7, 128.0, 123.3, 122.5, 118.4, 104.7, 75.4 (dd, J=25.4, 19.3 Hz), 72.8, 24.6, 21.0 (d, J=5.4 Hz), 14.4, 13.6; 19F NMR (471 MHz, Chloroform-d) δ: -87.07 (d, J=41.3 Hz), -89.36 (dd, J=40.9, 24.6 Hz). HRMS (ESI) calcd for C16H17F2N2O2 [M-H]- 307.1264, found 307.1260.

    6-Chloro-2-(3, 3-difluoroallyl)-N-ethoxy-5-fluoro-1H-indole-1-carboxamide (3s): White solid, 73 mg, 72% yield. m.p. 107~108 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.10 (s, 1H), 7.72 (d, J=6.0 Hz, 1H), 7.23 (d, J=8.9 Hz, 1H), 6.38 (s, 1H), 4.51 (dt, J=24.6, 7.8 Hz, 1H), 4.17 (q, J=7.0 Hz, 2H), 3.64 (d, J=7.8 Hz, 2H), 1.39 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.2 (dd, J=289.7, 286.9 Hz), 154.4 (d, J=242.1 Hz), 152.3, 140.9 (t, J=2.8 Hz), 131.8, 128.3 (d, J=8.9 Hz), 116.8 (d, J=20.6 Hz), 114.1, 107.0 (d, J=23.6 Hz), 106.3 (d, J=3.8 Hz), 75.3 (dd, J=25.5, 19.3 Hz), 73.2, 22.2 (d, J=5.4 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -86.66 (d, J=40.6 Hz), -88.93 (dd, J=40.6, 24.5 Hz), -122.73 (t, J=7.6 Hz). HRMS (ESI) calcd for C14H11ClF3N2O2 [M-H]- 331.0467, found 331.0460.

    4-Bromo-2-(3, 3-difluoroallyl)-N-ethoxy-3-methyl-1H-indole-1-carboxamide (3t): White solid, 73 mg, 72% yield. m.p. 138~139 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.25 (s, 1H), 7.55 (d, J=8.3 Hz, 1H), 7.32 (d, J=7.7 Hz, 1H), 7.02 (t, J=8.0 Hz, 1H), 4.44 (dtd, J=25.2, 7.6, 2.1 Hz, 1H), 4.14 (q, J=7.0 Hz, 2H), 3.56 (d, J=7.5 Hz, 2H), 2.48 (s, 3H), 1.36 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.6 (dd, J=288.8, 287.4 Hz), 152.0, 136.1, 134.8, 128.0, 126.9, 124.2, 114.9, 114.6, 111.0, 76.4 (dd, J=23.8, 18.9 Hz), 73.1, 19.0 (d, J=5.3 Hz), 13.6, 11.2; 19F NMR (471 MHz, Chloroform-d) δ: -88.15 (d, J=44.3 Hz), -89.03 (dd, J=44.8, 25.8 Hz). HRMS (ESI) calcd for C15H14BrF2N2O2 [M-H]- 371.0212, found 371.0203.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-fluoro-3-methyl-1H-indole-1-carboxamide (3u): White solid, 87 mg, 93% yield. m.p. 139~140 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.14 (s, 1H), 7.57 (dd, J=9.0, 4.3 Hz, 1H), 7.11 (dd, J=8.8, 2.6 Hz, 1H), 6.95 (td, J=9.0, 2.6 Hz, 1H), 4.51 (dtd, J=25.4, 7.6, 2.1 Hz, 1H), 4.14 (q, J=7.0 Hz, 2H), 3.59 (dt, J=7.6, 1.8 Hz, 2H), 2.18 (s, 3H), 1.37 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 159.1 (d, J=239.3 Hz), 159.1~154.2 (m), 152.9, 135.5, 131.6 (d, J=9.4 Hz), 130.9, 114.2 (d, J=4.0 Hz), 113.2 (d, J=9.2 Hz), 111.4 (d, J=25.5 Hz), 104.7 (d, J=23.4 Hz), 76.5 (dd, J=23.8, 18.8 Hz), 73.0, 19.6 (d, J=5.3 Hz), 13.7, 8.5; 19F NMR (471 MHz, Chloroform-d) δ: -88.34 (d, J=44.4 Hz), -89.32 (dd, J=44.9, 25.7 Hz), -121.14 (dq, J=10.2, 5.3 Hz). HRMS (ESI) calcd for C15H14F3N2O2 [M-H]- 311.1013, found 311.1006.

    5-Bromo-2-(3, 3-difluoroallyl)-N-ethoxy-3-methyl-1H-indole-1-carboxamide (3v): White solid, 86 mg, 76% yield. m.p. 145~146 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.13 (s, 1H), 7.59 (d, J=2.0 Hz, 1H), 7.50 (d, J=8.7 Hz, 1H), 7.32 (dd, J=8.7, 2.0 Hz, 1H), 4.50 (dtd, J=25.3, 7.7, 2.1 Hz, 1H), 4.15 (q, J=7.0 Hz, 2H), 3.59 (dt, J=7.7, 1.8 Hz, 2H), 2.19 (s, 3H), 1.37 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.7 (dd, J=288.6, 287.4 Hz), 152.6, 135.0, 133.3, 132.3, 126.4, 122.0, 115.6, 113.7, 76.5 (dd, J=23.8, 18.8 Hz), 73.1, 19.5 (d, J=5.3 Hz), 13.7, 8.4; 19F NMR (471 MHz, Chloroform-d) δ: -88.16 (d, J=44.1 Hz), -89.17 (dd, J=44.7, 25.7 Hz). HRMS (ESI) calcd for C15H14BrF2N2O2 [M-H]- 371.0212, found 371.0208.

    6-Bromo-2-(3, 3-difluoroallyl)-N-ethoxy-3-methyl-1H-indole-1-carboxamide (3w): White solid, 105 mg, 93% yield. m.p. 123~124 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.08 (s, 1H), 7.81 (s, 1H), 7.36~7.30 (m, 2H), 4.57~4.45 (m, 1H), 4.18 (q, J=6.9 Hz, 2H), 3.60 (d, J=7.4 Hz, 2H), 2.21 (s, 3H), 1.39 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.7 (dd, J=288.4, 287.4 Hz), 152.5, 135.3, 134.3, 129.3, 125.5, 120.3, 117.1, 115.4, 114.1, 76.4 (dd, J=23.7, 18.7 Hz), 73.1, 19.4 (d, J=5.3 Hz), 13.7, 8.4; 19F NMR (471 MHz, Chloroform-d) δ: -88.21 (d, J=43.5 Hz), -89.23 (dd, J=43.5, 25.3 Hz). HRMS (ESI) calcd for C15H14BrF2N2O2 [M-H]- 371.0212, found 371.0206.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-methoxy-3-methyl-1H- indole-1-carboxamide (3x): White solid, 75 mg, 77% yield. m.p. 120~122 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.12 (s, 1H), 7.53 (d, J=8.9 Hz, 1H), 6.90 (d, J=2.5 Hz, 1H), 6.85 (dd, J=9.0, 2.6 Hz, 1H), 4.55 (dtd, J=25.5, 7.7, 2.2 Hz, 1H), 4.14 (q, J=7.0 Hz, 2H), 3.85 (s, 3H), 3.60 (dt, J=7.8, 1.7 Hz, 2H), 2.19 (s, 3H), 1.38 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 159.1~154.0 (m), 155.8, 153.2, 134.7, 131.6, 129.1, 114.1, 113.3, 112.4, 101.8, 76.8 (dd, J=23.4, 18.8 Hz), 72.9, 55.9, 19.6 (d, J=5.3 Hz), 13.7, 8.6; 19F NMR (376 MHz, Chloroform-d) δ: -88.75 (d, J=44.8 Hz), -89.69 (dd, J=45.0, 25.5 Hz). HRMS (ESI) calcd for C16H19F2N2O3 [M+H]+ 325.1358, found 325.1355.

    2-(3, 3-Difluoroallyl)-N-ethoxy-5-(pyrrolidin-1-yl)-1H-indole-1-carboxamide (3y): White solid, 33 mg, 30 % yield. m.p. 143~145 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.19 (s, 1H), 7.48 (d, J=8.9 Hz, 1H), 6.60 (s, 1H), 6.54 (d, J=9.0 Hz, 1H), 6.28 (s, 1H), 4.55 (dtd, J=24.9, 7.8, 2.1 Hz, 1H), 4.13 (q, J=7.1 Hz, 2H), 3.63 (dd, J=7.8, 1.5 Hz, 2H), 3.27 (s, 4H), 2.04~1.97 (m, 4H), 1.37 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 157.0 (dd, J=289.1, 285.8 Hz), 153.6, 144.8, 139.6, 130.8, 127.4, 113.2, 109.8, 106.7, 102.0, 76.0 (dd, J=24.6, 19.1 Hz), 72.8, 48.4, 25.5, 22.7 (d, J=5.3 Hz), 13.7; 19F NMR (471 MHz, Chloroform-d) δ: -87.85 (d, J=43.2 Hz), -90.05 (dd, J=43.1, 25.0 Hz). HRMS (ESI) calcd for C18H22F2N3O2 [M+H]+ 350.1675, found 350.1671.

    2, 5-Bis(3, 3-difluoroallyl)-N-ethoxy-1H-pyrrole-1-car-boxamide (3aa): Yellow solid, 38 mg, 40% yield. m.p. 52~54 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.19 (s, 1H), 5.89 (s, 2H), 4.36 (dtd, J=24.6, 7.7, 2.0 Hz, 2H), 4.08 (q, J=7.0 Hz, 2H), 3.37 (dt, J=7.7, 1.8 Hz, 4H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 156.8 (dd, J=288.9, 286.8 Hz), 152.0, 131.1, 109.3, 76.2 (dd, J=24.2, 19.2 Hz), 72.9, 21.2 (d, J=5.3 Hz), 13.6; 19F NMR (376 MHz, Chloroform-d) δ: -87.63 (d, J=43.5 Hz), -89.86 (dd, J=43.7, 24.8 Hz). HRMS (ESI) calcd for C13H13F4N2O2 [M-H]- 305.0919, found 305.0917.

    2-(3, 3-Difluoroallyl)-N-methoxy-1H-indole-1-carboxa-mide (3ba): White solid, 48 mg, 60% yield. m.p. 70~71 ℃; 1H NMR (400 MHz, Chloroform-d) δ: 8.46 (s, 1H), 7.64 (dq, J=8.3, 0.9 Hz, 1H), 7.49 (ddd, J=7.5, 1.5, 0.7 Hz, 1H), 7.22 (ddd, J=8.3, 7.3, 1.5 Hz, 1H), 7.17 (td, J=7.5, 1.2 Hz, 1H), 6.41 (q, J=1.1 Hz, 1H), 4.51 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 3.92 (s, 3H), 3.63 (dq, J=7.8, 1.5 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ: 157.1 (dd, J=289.4, 286.4 Hz), 152.8, 139.0, 135.3, 129.2, 123.5, 122.7, 120.9, 112.4, 106.6, 75.7 (dd, J=25.0, 19.1 Hz), 65.0, 22.3 (d, J=5.5 Hz); 19F NMR (471 MHz, Chloroform-d) δ: -87.38 (d, J=41.9 Hz), -89.58 (dd, J=42.2, 24.8 Hz). HRMS (ESI) calcd for C13H11F2N2O2 [M-H]- 265.0794, found 265.0791.

    N-(tert-Butoxy)-2-(3, 3-difluoroallyl)-1H-indole-1-carboxamide (3ca): White solid, 27 mg, 23% yield. m.p. 95~97 ℃; 1H NMR (400 MHz, Chloroform-d) δ: 7.80 (s, 1H), 7.70 (d, J=7.9 Hz, 1H), 7.51 (dt, J=7.5, 1.1 Hz, 1H), 7.27~7.22 (m, 1H), 7.18 (td, J=7.7, 0.9 Hz, 1H), 6.43 (s, 1H), 4.57 (dtd, J=24.8, 7.8, 2.0 Hz, 1H), 3.66 (dq, J=7.9, 1.5 Hz, 2H), 1.42 (s, 9H); 13C NMR (101 MHz, Chloroform-d) δ: 157.1 (dd, J=289.0, 286.4 Hz), 154.1, 139.9~138.6 (m), 135.3, 129.3, 123.5, 122.6, 121.0, 112.1, 106.4, 82.8, 75.8 (dd, J=25.1, 19.0 Hz), 26.7, 22.3 (d, J=5.5 Hz); 19F NMR (471 MHz, Chloroform-d) δ: -87.43 (d, J=42.5 Hz), -89.71 (dd, J=42.2, 24.8 Hz). HRMS (ESI) calcd for C16H19F2N2O2 [M+H]+ 309.1409, found 309.1407.

    N-(Benzyloxy)-2-(3, 3-difluoroallyl)-1H-indole-1-carbo-xamide (3da): White solid, 77 mg, 78% yield. m.p. 74~75 ℃; 1H NMR (400 MHz, Chloroform-d) δ: 8.11 (s, 1H), 7.51~7.39 (m, 6H), 7.33 (dq, J=7.7, 0.9 Hz, 1H), 7.17~7.07 (m, 2H), 6.42~6.35 (m, 1H), 5.08 (s, 2H), 4.51 (dtd, J=24.7, 7.8, 2.0 Hz, 1H), 3.62 (dq, J=7.8, 1.5 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ: 157.1 (dd, J=289.4, 286.2 Hz), 152.4, 139.0 (d, J=2.8 Hz), 135.3, 135.2, 129.5, 129.2, 129.2, 129.0, 123.4, 122.6, 120.8, 112.3, 106.5, 78.8, 75.8 (dd, J=25.2, 19.2 Hz), 22.2 (d, J=5.5 Hz); 19F NMR (471 MHz, Chloroform-d) δ: -87.32 (d, J=41.8 Hz), -89.55 (dd, J=41.9, 24.6 Hz). HRMS (ESI) calcd for C19H15F2N2O2 [M-H]- 341.1107, found 341.1102.

    To a reaction tube were added 2-(3, 3-difluoroallyl)-N- ethoxy-3-methyl-1H-indole-1-carboxamide (3) (0.2 mmol), NIS (90 mg, 0.4 mmol, 2.0 equiv.), and acetonitrile (2.0 mL). The solution was kept at room temperature for 8 h. Then it was quenched with aqueous Na2S2O3, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexane)/ V(EtOAc)=20/1~15/1] to give a corresponding product 4.

    3-(Difluoroiodomethyl)-2-ethoxy-5-methyl-3, 4-dihydro-pyrimido[1, 6-a]indol-1(2H)-one (4b): White solid, 37 mg, 44% yield. m.p. 126~128 ℃; 1H NMR (500 MHz, Acetone-d6) δ: 8.26 (dt, J=8.2, 1.0 Hz, 1H), 7.49 (dt, J=7.5, 1.0 Hz, 1H), 7.29~7.26 (m, 1H), 7.23 (td, J=7.4, 1.2 Hz, 1H), 4.74~4.67 (m, 1H), 4.25~4.14 (m, 2H), 3.61 (dd, J=5.1, 2.2 Hz, 2H), 2.22 (t, J=1.1 Hz, 3H), 1.29 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 149.6, 135.9, 131.8, 127.0, 124.8, 123.6, 119.3, 115.5, 113.0, 103.7 (dd, J=319.0, 317.3 Hz), 71.6, 67.4 (dd, J=23.0, 19.9 Hz), 24.1 (d, J=2.9 Hz), 13.8, 8.1; 19F NMR (471 MHz, Acetone-d6) δ: -44.93 (d, J=189.4 Hz), -46.95 (dd, J=189.2, 15.1 Hz). HRMS (ESI) calcd for C15H16F2I- N2O2 [M+H]+ 421.0219, found 421.0211.

    6-Bromo-3-(difluoroiodomethyl)-2-ethoxy-5-methyl-3, 4- dihydropyrimido[1, 6-a]indol-1(2H)-one (4t): Yellow solid, 53 mg, 54% yield. m.p. 175~177 ℃; 1H NMR (500 MHz, Acetone-d6) δ: 8.33 (d, J=8.2 Hz, 1H), 7.39 (d, J=7.8 Hz, 1H), 7.15 (t, J=8.0 Hz, 1H), 4.78~4.68 (m, 1H), 4.27~4.12 (m, 2H), 3.68~3.54 (m, 2H), 2.45 (d, J=1.4 Hz, 3H), 1.28 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 149.0, 137.3, 129.3, 129.2, 128.1, 125.9, 115.0, 114.3, 113.3, 105.9~100.3 (m), 71.7, 67.1 (dd, J=23.6, 19.9 Hz), 24.0 (t, J=2.8 Hz), 13.7, 11.1; 19F NMR (471 MHz, Acetone-d6) δ: -45.55 (d, J=190.6 Hz), -47.14 (dd, J=190.9, 14.8 Hz). HRMS (ESI) calcd for C15H15BrF2IN2O2 [M+H]+ 498.9324, found 498.9311.

    3-(Difluoroiodomethyl)-2-ethoxy-7-fluoro-5-methyl-3, 4-dihydropyrimido[1, 6-a]indol-1(2H)-one (4u): Yellow solid, 50 mg, 57% yield. m.p. 112~113 ℃; 1H NMR (500 MHz, Acetone-d6) δ: 8.23 (dd, J=8.9, 4.7 Hz, 1H), 7.23 (dd, J=9.2, 2.6 Hz, 1H), 7.05 (td, J=9.2, 2.6 Hz, 1H), 4.76~4.68 (m, 1H), 4.27~4.13 (m, 2H), 3.63 (d, J=4.4 Hz, 2H), 2.22 (s, 3H), 1.29 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 160.4 (d, J=237.4 Hz), 149.4, 133.0 (d, J=9.7 Hz), 132.3, 129.2, 116.6 (d, J=9.1 Hz), 113.0 (d, J=3.9 Hz), 112.2 (d, J=25.1 Hz), 105.1 (d, J=24.1 Hz), 103.5 (dd, J=318.9, 317.7 Hz), 71.7, 67.5 (dd, J=23.3, 19.9 Hz), 24.2 (t, J=2.9 Hz), 13.9, 8.2; 19F NMR (471 MHz, Acetone-d6) δ: -45.22 (d, J=190.9 Hz), -46.99 (dd, J=190.2, 17.1 Hz), -117.55~-125.51 (m). HRMS (ESI) calcd for C15H15F3IN2O2 [M+H]+439.0125, found 439.0124.

    7-Bromo-3-(difluoroiodomethyl)-2-ethoxy-5-methyl-3, 4- dihydropyrimido[1, 6-a]indol-1(2H)-one (4v): Yellow solid, 67 mg, 68% yield. m.p. 134~136 ℃; 1H NMR (500 MHz, Acetone-d6) δ: 8.18 (d, J=8.7 Hz, 1H), 7.67 (d, J=2.0 Hz, 1H), 7.41 (dd, J=8.7, 2.0 Hz, 1H), 4.77~4.69 (m, 1H), 4.27~4.11 (m, 2H), 3.64 (d, J=4.2 Hz, 2H), 2.23 (s, 3H), 1.29 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 149.3, 134.7, 133.8, 128.9, 127.5, 122.2, 117.2, 116.6, 112.6, 106.2~100.6 (m), 71.8, 67.4 (dd, J=23.4, 20.2 Hz), 24.1 (d, J=3.3 Hz), 13.9, 8.1; 19F NMR (471 MHz, Acetone-d6) δ: -45.36 (d, J=190.8 Hz), -46.90 (dd, J=190.3, 14.4 Hz). HRMS (ESI) calcd for C15H15Br- F2IN2O2 [M+H]+ 498.9324, found 498.9324.

    8-Bromo-3-(difluoroiodomethyl)-2-ethoxy-5-methyl-3, 4-dihydropyrimido[1, 6-a]indol-1(2H)-one (4w): Yellow solid, 50 mg, 50% yield. m.p. 163~165 ℃; 1H NMR (500 MHz, Acetone-d6) δ: 8.48 (d, J=1.8 Hz, 1H), 7.50 (d, J=8.3 Hz, 1H), 7.42 (dd, J=8.4, 1.8 Hz, 1H), 4.80~4.72 (m, 1H), 4.30~4.16 (m, 2H), 3.66 (d, J=4.3 Hz, 2H), 2.26 (s, 3H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 149.3, 136.5, 130.9, 128.2, 126.6, 121.0, 118.3, 117.9, 113.1, 106.5~100.1 (m), 71.8, 67.3 (dd, J=23.3, 20.3 Hz), 24.0 (t, J=2.9 Hz), 13.9, 8.1; 19F NMR (471 MHz, Acetone-d6) δ: -45.35 (d, J=190.8 Hz), -46.69 (dd, J=190.5, 14.5 Hz). HRMS (ESI) calcd for C15H15BrF2IN2O2 [M+H]+ 498.9324, found 498.9314.

    3-(Difluoroiodomethyl)-2-ethoxy-7-methoxy-5-methyl-3, 4-dihydropyrimido[1, 6-a]indol-1(2H)-one (4x): White solid, 25 mg, 23% yield. m.p. 104~106 ℃; 1H NMR (400 MHz, Acetone-d6) δ: 8.12 (d, J=8.9 Hz, 1H), 7.01 (d, J=2.4 Hz, 1H), 6.88 (dd, J=8.9, 2.5 Hz, 1H), 4.73~4.62 (m, 1H), 4.26~4.10 (m, 2H), 3.84 (s, 3H), 3.59 (d, J=4.3 Hz, 2H), 2.19 (t, J=1.0 Hz, 3H), 1.28 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 157.2, 149.5, 132.7, 130.3, 127.6, 116.1, 113.1, 112.9, 106.4~100.8 (m), 102.3, 71.5, 67.5 (dd, J=22.8, 19.8 Hz), 55.9, 24.1 (d, J=3.0 Hz), 13.8, 8.1; 19F NMR (471 MHz, Acetone-d6) δ: -44.80 (d, J=189.1 Hz), -46.66 (dd, J=189.2, 14.7 Hz). HRMS (ESI) calcd for C16H18F2IN2O3 [M+H]+ 451.0325, found 451.0326.

    To a round bottom flask were added N-ethoxy-1H-in- dole-1-carboxamide (1a) (1.00 g, 4.9 mmol, 1.0 equiv.), 3-bromo-3, 3-difluoroprop-1-ene 2a (2.31 g, 14.69 mmol, 3.0 equiv.), [RhCp*Cl2]2 (302.9 mg, 0.49 mmol, 10 mol%), NaOAc (804 mg, 9.8 mmol, 2.0 equiv.), and ethanol absolute (33.0 mL), and then the round bottom flask was evacuated and purged with Ar three times. The solution was kept at 60 ℃ (oil bath) for 24 h. Then it was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexanes)/ V(EtOAc)=20/1~10/1] to give a corresponding product 3a (0.894 g, 65% yield).

    To a round bottom flask were added 2-(3, 3-difluoroall- yl)-N-ethoxy-1H-indole-1-carboxamide (3a) (56 mg, 0.2 mmol), Pd(OH)2/C (11.2 mg, palladium hydroxide 20% on carbon, ca. 50% water), and MeOH (2 mL), then the round bottom flask was evacuated and purged with H2 three times. The reaction was kept at room temperature for 3 h. Then it was filtered through celite and the residue was washed with EtOAc three times. The filtrate was concentrated to dryness. The crude mixture was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=20/1~10/1] to give a corresponding product 5a (48 mg, 85% yield).

    2-(3, 3-Difluoropropyl)-N-ethoxyindoline-1-carboxamide (5a): Oil, 48 mg, 85% yield. 1H NMR (400 MHz, Acetone-d6) δ: 9.21 (s, 1H), 7.83 (d, J=8.1 Hz, 1H), 7.21~7.14 (m, 1H), 7.13 (t, J=7.7 Hz, 1H), 6.92 (td, J=7.5, 1.1 Hz, 1H), 6.00 (tt, J=57.0, 4.1 Hz, 1H), 4.62~4.49 (m, 1H), 3.93 (q, J=7.0 Hz, 2H), 3.34 (dd, J=16.2, 9.3 Hz, 1H), 2.86 (dd, J=16.2, 1.6 Hz, 1H), 1.99~1.68 (m, 4H), 1.20 (t, J=7.0 Hz, 3H); 13C NMR (126 MHz, Acetone-d6) δ: 156.5, 143.8, 130.7, 128.0, 125.7, 123.1, 118.4 (t, J=237.2 Hz), 116.1, 71.9, 58.5, 34.3, 30.2 (t, J=21.2 Hz), 27.4 (t, J=5.3 Hz), 13.9; 19F NMR (471 MHz, Acetone-d6) δ: -116.59~-116.90 (m). HRMS (ESI) calcd for C14H17F2N2O2 [M-H]- 283.1264, found 283.1266.

    To a round bottom flask were added 3-(difluoroiodome-thyl)-2-ethoxy-7-fluoro-5-methyl-3, 4-dihydropyrimido-[1, 6-a]indol-1(2H)-one (4u) (88 mg, 0.2 mmol), AIBN (13.2 mg, 0.08 mmol, 0.4 equiv.), Bu3SnH (292.3 mg, 1 mmol, 5equiv.) and benzene (5 mL). The reaction was kept at 80 ℃ (oil bath) for 0.5 h, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=50/1~10/1] to give a corresponding product 6u (49 mg, 78% yield).

    3-(Difluoromethyl)-2-ethoxy-7-fluoro-5-methyl-3, 4-di-hydropyrimido[1, 6-a]indol-1(2H)-one (6u): White solid, 49 mg, 78% yield. m.p. 136~137 ℃; 1H NMR (500 MHz, Chloroform-d) δ: 8.25 (dd, J=9.4, 4.5 Hz, 1H), 7.12~7.04 (m, 1H), 7.01 (td, J=9.2, 2.3 Hz, 1H), 6.17 (td, J=55.5, 54.2, 2.6 Hz, 1H), 4.23 (p, J=7.5 Hz, 2H), 4.18~4.09 (m, 2H), 3.40~3.25 (m, 2H), 1.35 (t, J=7.1 Hz, 3H); 13C NMR (126 MHz, Chloroform-d) δ: 159.8 (d, J=239.6 Hz), 151.8, 132.1 (d, J=9.6 Hz), 131.3, 128.1, 116.3 (d, J=9.1 Hz), 113.0 (dd, J=249.1, 244.2 Hz), 112.2 (d, J=4.0 Hz), 112.0 (d, J=25.0 Hz), 104.3 (d, J=23.9 Hz), 72.1, 60.0 (dd, J=29.2, 22.8 Hz), 19.4, 13.6, 8.3;19F NMR (471 MHz, Chloroform-d) δ: -119.91 (q, J=9.4, 7.9 Hz), -128.92 (dd, J=291.8, 54.8 Hz), -131.71 (ddd, J=290.9, 56.5, 20.8 Hz). HRMS (ESI) calcd for C15H16F3N2O2 [M+H]+ 313.1158, found 313.1156.

    To a reaction tube were added N-ethoxy-1H-indole- 1-carboxamide (1a) (60 mg, 0.3 mmol), 3-bromo-3, 3- difluoroprop-1-ene (2a) (139 mg, 0.9 mmol), [RhCp*Cl2]2 (18 mg, 10 mol%), NaOAc (48 mg, 0.6 mmol), and then the reaction tube was evacuated and purged with Ar three times. Ethanol absolute (2.0 mL) was added to the tube through syringe. The solution was kept at 60 ℃ (oil bath) for 1min under Ar. Immediately the reaction mixture was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=20/1~10/1] to give a corresponding product 3a (52 mg, 63% yield).

    To a reaction tube were added N-ethoxy-1H-indole- 1-carboxamide ([D]-1a) (60 mg, 0.3 mmol), 3-bromo- 3, 3-difluoroprop-1-ene (2a) (139 mg, 0.9 mmol), [RhCp*Cl2]2 (18 mg, 10 mol%), NaOAc (48 mg, 0.6 mmol), and then the reaction tube was evacuated and purged with Ar three times. Ethanol absolute (2.0 mL) was added to the tube through syringe. The solution was kept at 60 ℃ for 1 min under Ar. Immediately the reaction mixture was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=20/1~10/1] to give corresponding product 3a (42 mg, 51% yield). An intramolecular kinetic isotopic effect of this reaction was thus determined to be kH/kD=1.24.

    To a reaction tube were added N-ethoxy-4-methoxy-1H- indole-1-carboxamide (1e) (35 mg, 0.15 mmol), N-ethoxy-4- fluoro-1H-indole-1-carboxamide (1f) (34 mg, 0.15 mmol), 3-bromo-3, 3-difluoroprop-1-ene (2a) (70 mg, 0.45 mmol), [RhCp*Cl2]2 (9 mg, 10 mol%), NaOAc (24 mg, 0.3 mmol), and then the reaction tube was evacuated and purged with Ar three times. Ethanol absolute (1.0 mL) was added to the tube through syringe. The solution was kept at 60 ℃ (oil bath) for 24 h under Ar. After cooled to room temperature, the reaction mixture was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=20/1~10/1] to give mixture products. The ratio of products 3f/3e was analyzed by 1H NMR.

    To a reaction tube was added N-ethoxy-5-methyl- 1H-indole-1-carboxamide (1g) (33 mg, 0.15 mmol), N-ethoxy-5-(trifluoromethyl)-1H-indole-1-carboxamide (1l) (41 mg, 0.15 mmol), 3-bromo-3, 3-difluoroprop-1-ene (2a) (70 mg, 0.45 mmol), [RhCp*Cl2]2 (9 mg, 10 mol%), NaOAc (24 mg, 0.3 mmol), and then the reaction tube was evacuated and purged with Ar three times. Ethanol absolute (1.0 mL) was added to the tube through syringe. The solution was kept at 60 ℃ (oil bath) for 24 h under Ar. After cooled to room temperature, the reaction mixture was diluted with H2O, extracted with EtOAc, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography [V(hexanes)/V(EtOAc)=20/1~10/1] to give mixture products. The ratio of products 3l/3g was analyzed by 1H NMR.

    Pyridine (15.8 mg, 0.20 mmol) was added to a solution of [RhCp*Cl2]2 (61.8 mg, 0.10 mmol) in DCM (8 mL) at room temperature. After stirring for 4 h, N-ethoxy-1H- indole-1-carboxamide (1a) (40.8 mg, 0.20 mmol), NaOAc (41.0 mg, 0.50 mmol), and Na2CO3 (21.6 mg, 0.20 mmol) were added to the solution, and the reaction mixture was stirred for another 12 h. After completion, the solution was evaporated under reduced pressure and washed with diethyl ether. HRMS analysis of the organometallic products indicated the formation of rhodacyle 7. HRMS (ESI) calcd for C21H26N2O2Rh [M+H-C5H5N]+ 441.1044, found 441.1033.

    Supporting Information  1H NMR, 13C NMR and 19F NMR spectra scans of all new compounds. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      (a) Mizuta, M.; Seio, K.; Miyata, K.; Sekine, M. J. Org. Chem. 2007, 72, 5046.
      (b) Bandurco, V. T.; Wong, E. M.; Levine, S. D.; Hajos, Z. G. J. Med. Chem. 1981, 24, 1455.
      (c) Hammer, H.; Winterfeldt, E. Tetrahedron 1981, 37, 3609.
      (d) Kato, M.; Nishino, S.; Iro, K.; Yamakuni, H.; Takasugi, H. Chem. Pharm. Bull. 1994, 42, 2556.
      (e) Wright, W. B.; Brabander, H. J. J. Med. Chem. 1968, 11, 1164.

    2. [2]

      (a) Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490.
      (b) Zheng, J.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 3560.
      (c) Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 192.

    3. [3]

      (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    4. [4]

      (a) Price, D. A.; Armour, D.; de Groot, M.; Leishman, D.; Napier, C.; Perros, M.; Stammen, B. L.; Wood, A. Bioorg. Med. Chem. Lett. 2006, 16, 4633.
      (b) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229.
      (c) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 3949.
      (d) Massa, M. A.; Spangler, D. P.; Durley, R. C.; Hickory, B. S.; Connolly, D. T.; Witherbee, B. J.; Smith, M. E.; Sikorski, J. A. Bioorg. Med. Chem. Lett. 2001, 11, 1625.

    5. [5]

      Middleton, W. J.; Bingham, E. M. J. Org. Chem. 1980, 45, 2883. doi: 10.1021/jo01302a025

    6. [6]

      (a) Fujita, T.; Sugiyama, K.; Sanada, S.; Ichitsuka, T.; Ichikawa, J. Org. Lett. 2016, 18, 248.
      (b) S. Akiyama, S.; Kubota, K.; Mikus, M. S.; Paioti, P. H. S.; Romiti, F.; Liu, Q.; Zhou, Y.; Hoveyda, A. H.; Ito, H. Angew. Chem., Int. Ed. 2019, 58, 11998.
      (c) Cogswell, T. J.; Dahlen A.; Knerr, L. Chem.-Eur. J. 2019, 25, 1184.

    7. [7]

      Min, Q. Q.; Yin, Z.; Feng, Z.; Guo, W. H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230. doi: 10.1021/ja4114825

    8. [8]

      Li, C.; Zhang, D.; Zhu, W.; Wan, P.; Liu, H. Org. Chem. Front. 2016, 3, 1080. doi: 10.1039/C6QO00178E

    9. [9]

      Ni, J.; Zhao, H.; Zhang, A. Org. Lett. 2017, 19, 3159. doi: 10.1021/acs.orglett.7b01282

    10. [10]

      (a) Wu, X.; Wang, B.; Zhou, S.; Zhou, Y.; Liu, H. ACS Catal. 2017, 7, 2494.
      (b) Wu, X.; Wang, B.; Zhou, Y.; Liu, H. Org. Lett. 2017, 19, 1294.
      (c) Xie, Y.; Wu, X.; Li, C.; Wang, J.; Li, J.; Liu, H. J. Org. Chem. 2017, 82, 5263.
      (d) Fei, X.; Li, C.; Yu X.; Liu, H. J. Org. Chem. 2019, 84, 6840.
      (e) Yang, L.; Li, C.; Wang, D.; Liu, H. J. Org. Chem. 2019, 84, 7320.

    11. [11]

      (a) Dai, H.; Yu, C.; Wang, Z.; Yan, H.; Lu, C. Org. Lett. 2016, 18, 3410.
      (b) Dutta, U.; Deb, A.; Lupton, D. W.; Maiti, D. Chem. Commun. 2015, 51, 17744.

    12. [12]

      (a) Zhang, L.; Zhu, M.; Ni, S.; Wen, L.; Li, M. ACS Catal. 2019, 9, 1680.
      (b) Kong, W.; Chen, X.; Wang, M.; Dai, H.; Yu, J. Org. Lett. 2018, 20, 284.

    13. [13]

      Nihei, T.; Iwai, N.; Matsuda, T.; Kitazume, T. J. Org. Chem. 2005, 70, 5912. doi: 10.1021/jo050634u

  • Figure 1  Structures of functional and bioactive pyrimido- [1, 6-a]-indol-1(2H)-ones

    Scheme 1  3, 3-Difluoroallylation of indoles via C—H activation

    Scheme 2  NIS-mediated intramolecular cyclization of 3

    Scheme 3  Gram-scale reaction and derivatization

    Scheme 4  Mechanistic investigations

    Scheme 5  Proposed mechanism

    Table 1.  Optimization of reaction conditionsa

    Entry Cat. Base Solvent Yieldb/%
    1 [RuCl2(p-cymene)]2 NaOAc MeOH 31
    2 [IrCp*Cl2]2 NaOAc MeOH NRc
    3 [RhCp*Cl2]2 NaOAc MeOH 78
    4 [RhCp*Cl2]2 KOAc MeOH 75
    5 [RhCp*Cl2]2 EtONa MeOH 50
    6 [RhCp*Cl2]2 CsF MeOH 24
    7 [RhCp*Cl2]2 Et3N MeOH 60
    8 [RhCp*Cl2]2 DIPEA MeOH 74
    9 [RhCp*Cl2]2 NaOTf MeOH NR
    10 [RhCp*Cl2]2 NaOAc THF 70
    11 [RhCp*Cl2]2 NaOAc Dioxane 58
    12 [RhCp*Cl2]2 NaOAc DME 60
    13 [RhCp*Cl2]2 NaOAc TFE 60
    14 [RhCp*Cl2]2 NaOAc EtOH 82 (75)
    15d [RhCp*Cl2]2 NaOAc EtOH 56
    16e [RhCp*Cl2]2 NaOAc EtOH 79
    17f [RhCp*Cl2]2 NaOAc EtOH 69
    18g [RhCp*Cl2]2 NaOAc EtOH 68
    19 [RhCp*Cl2]2 EtOH NR
    20 NaOAc EtOH NR
    21h [RhCp*Cl2]2 NaOAc EtOH 79
    a Reaction conditions: 1a (0.3 mmol, 1.0 equiv.), 2a (0.9 mmol, 3.0 equiv.), catalyst (10 mol%), base (2.0 equiv.), solvents (2.0 mL), a sealed tube at 60 ℃ (oil bath) for 24 h under argon. b Determined by 19F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield. c No reaction. d 80 ℃ (oil bath). e 2.5 equiv. 2a was used. f 5 mol% catalyst was used. g 1.5 equiv. NaOAc was used. h Under Air.
    下载: 导出CSV

    Table 2.  Scope of indolesa

    a Reaction conditions: 1 (0.3 mmol, 1.0 equiv.), 2 (0.9 mmol, 3.0 equiv.), [RhCp*Cl2]2 (10 mol %) and NaOAc (2.0 equiv.) in EtOH (2.0 mL) at 60 ℃ (oil bath) for 24 h under argon. All listed yields are isolated ones.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  1354
  • HTML全文浏览量:  457
文章相关
  • 发布日期:  2020-06-25
  • 收稿日期:  2020-04-25
  • 修回日期:  2020-04-30
  • 网络出版日期:  2020-05-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章