

Citation: Jiang Wenjie, Song Yating, Wei Xiaojing, Xu Yi, Lu Juan, Jiang Bo, Hao Wenjuan. C—C Triple Bond Cleavage/Rearrangement Reaction for Accessing 2, 4, 4-Trichloronaphthalen-1(4H)-ones[J]. Chinese Journal of Organic Chemistry, 2019, 39(4): 1095-1101. doi: 10.6023/cjoc201811015

利用碳碳叁键断裂重组反应合成2, 4, 4-三氯萘-1(4H)-酮衍生物
-
关键词:
- 炔烃-联烯酮
- / [2+2]环加成
- / 碳碳叁键断裂重组反应
- / 2, 4, 4-三氯萘-1(4H)-酮衍生物
English
C—C Triple Bond Cleavage/Rearrangement Reaction for Accessing 2, 4, 4-Trichloronaphthalen-1(4H)-ones
-
近年来, 碳碳叁键的断裂重组反应在有机合成中是一类非常有用的合成策略, 展现出简单高效、原子经济等优点[1].此反应可通过非传统的断裂方式, 对碳碳叁键进行重组, 合成了一些具有重要价值的分子结构单元[2].早期, 对C≡C键切割重组的研究主要集中在化学计量的有机金属化合物参与的反应, 例如金属配合物中炔烃与配体的断裂[3]和氧化裂解[4], 该方法需要大量的有机金属化合物, 且适用范围较窄.此后, 化学工作者们发展了过渡金属催化的碳碳叁键的断裂和重组反应, 分别使用催化量的银[5]、钯[6]、铑[7]、金[8]、铜[9]、钌[10]等金属盐为催化剂, 有效地实现了C≡C键的切割和重组, 构筑了一系列结构不同的有机分子骨架.然而这些方法都使用了价格昂贵的金属催化剂, 易于金属残留, 不利于所合成产物的药物筛选[11].因此, 发展一种绿色、高效且原子经济的合成方法来实现无金属催化的C≡C键的切割重组反应是非常值得研究的课题.
一直以来我们课题组在串联环化反应方面积累了丰富的经验, 合成了大量具有生物重要性的碳环和杂环分子[12], 且在利用C≡C键的切割重组方面也取得了一些进展[13].如使用炔烃-联烯酮与1.5 equiv.的N-氯代丁二酰亚胺(NCS)为原料, 水作为亲核试剂, 合成了一系列二氯取代的1-萘酚衍生物[13a].继续研究该反应发现, 使用过量NCS (3.0 equiv.)与炔烃-联烯酮衍生物和水进行多组分串联反应时, 没有得到预期的二氯代1-萘酚衍生物, 而是高效地产生了一类结构新颖的三氯代萘-1-酮衍生物, 实现了同碳原子的双氯代反应(Scheme 1).
图式1
1. 结果与讨论
1.1 反应条件的优化
反应开始以炔烃-联烯酮(1a)、NCS与水为起始原料, 研究不同溶剂、不同温度和不同投料比及反应环境对三氯代萘-1-酮产物产率的影响.实验结果见表 1.利用炔烃-联烯酮1a、3 equiv. NCS与1.5 equiv.水在50 ℃下进行反应, 筛选了不同溶剂, 如乙腈(MeCN)、1, 2-二氯乙烷(DCE)、甲醇(CH3OH)、1, 4-二氧六环(1, 4-dio- xane)、四氢呋喃(THF)、二氯甲烷(DCM)和N, N-二甲基甲酰胺(DMF).在乙腈中反应最好, 产率达到66%, 在DCE、1, 4-二氧六环和DCM中产物的产率有较大幅度降低, 在甲醇和THF中反应效果不好, 几乎检测不到产物, 在DMF中产率中等, 为48% (表 1中Entries 1~7).接着考察不同温度对反应的影响.升高或降低反应温度都使反应的产率有所降低(表 1, Entry 1 vs. Entries 8~10).随后对反应投料比进行筛选(表 1, Entries 11~13), 发现炔烃-联烯酮与NCS投料比为1:3时, 反应效果最优, 给出目标产物的产率为66%(表 1, Entry 1).最后对反应环境进行了调整.氩气条件下也没有提高反应的产率(表 1中Entry 14), 鉴于氩气条件的复杂操作, 该反应仍在空气环境下实施.综上所述, 优化的反应条件是:乙腈为反应溶剂, 溶剂用量2.0 mL, 炔烃-联烯酮与NCS的物质的量之比为1:3, 水为1.5 equiv., 反应温度为50 ℃.
表 1
Entry 1a:NCS (mole ratio) Solvent T/℃ Yieldb/% 1 1:3 CH3CN 50 66 2 1:3 DCE 50 28 3 1:3 CH3OH 50 N.D.c 4 1:3 1, 4-Dioxane 50 25 5 1:3 THF 50 Trace 6 1:3 DCM 50 30 7 1:3 DMF 50 48 8 1:3 CH3CN 60 59 9 1:3 CH3CN 40 63 10 1:3 CH3CN 30 55 11 1:2 CH3CN 50 35 12 1:3.5 CH3CN 50 58 13 1:4 CH3CN 50 52 14d 1:3 CH3CN 50 58 a Reaction condition: 1a (0.2 mmol), NCS (0.6 mmol), H2O (1.5 equiv.), solvent (2.0 mL), air conditions. b Isolated yield based on substrate 1a. c No detected (N. D.). d Argon gas. 1.2 反应底物的拓展
在最佳优化条件下, 对该反应体系的底物普适性进行了探索(表 2).最初考察了连接在炔烃上的芳基(R1)的适用范围.结构表明:芳环R1上的各种取代基均能兼容此反应, 如氟(1b)、氯(1c, 1d)、溴(1e)、甲基(1f, 1g)、乙基(1h)以及叔丁基(1i), 且能提供相应的目标产物2b~2i, 产率为55%~88%.其中, 与邻位和间位相比, 在芳环对位的同类取代基能提供更高产率的目标产物(2c vs 2d; 2f vs 2g).此外, 当炔基上的取代基R1为萘基时, 该反应也能进行, 得到相应目标产物2j, 产率为64%.随后评估了炔烃-联烯酮的内芳环上电子效应对反应的影响.因此, 在芳环上的4或5位引入了不同电子性质的取代基团如氟(1k~1l, 1o)、氯(1m, 1n)和4-甲基(1p~1r).在相同的反应条件下, 带有上述官能团的炔烃-联烯酮均可顺利参与此反应, 并以较高产率得到相应产物2k~2r, 产率为59%~84%.总之, 此类用于直接构建三氯代萘-1-酮骨架的串联环加成策略是一类新颖可靠的合成方法.所合成的三氯代萘-1-酮衍生物的结构均经NMR谱和HR-MS表征.此外, 通过单晶X射线衍射进一步确定了化合物2e的结构, (图 1), CCDC号为1554753.
表 2
图 1
1.3 反应机理探讨
为了探究反应机理, 我们实施了相关的控制反应, 将已制备的中间体Int-3与1 equiv.的N-氯代丁二酰亚胺(NCS)在标准条件下进行了尝试.非常幸运的是, 此反应能顺利进行, 得到相应的产物2a, 收率为70% (Eq. 1).由此可推断该反应过程中可能涉及中间体Int-3的形成.
(1) 根据文献报道[14]和上述的实验结果, 提出一个可能的反应机理.如Scheme 2所示, 首先炔烃-联烯酮1发生分子内的[2+2]环加成[15], 生成环丁烯中间体A (已被理论计算证实)[13c].随后中间体A在N-氯代丁二酰亚胺和水的存在下, 通过卤代羟基化得到中间体C, 再经历环丁烯开环反应和质子转移(P.T.)形成中间体D.最后, 中间体D与N-氯代丁二酰亚胺经过连续的两次氯代反应得到最终产物2.
图式2
2. 结论
在无金属催化条件下, 将炔烃-联烯酮与N-氯代丁二酰亚胺和水进行多组分反应, 经历[2+2]环加成、环丁烯原位开环及三次氯化反应, 高效地合成了18例2, 4, 4-三氯萘-1(4H)-酮衍生物, 产率为55%~88%.该反应实现了温和条件下的碳碳叁键的切割和重组, 完成了2, 4, 4-三氯萘-1(4H)-酮骨架的有效构筑, 为合成多官能化的萘酮衍生物提供了一种有效新颖的方法.此外, 该串联反应还具有反应温和、环境友好、原子经济、操作简单等优点.
3. 实验部分
3.1 仪器与试剂
仪器:熔点测定仪(XT-5型); 红外光谱仪(FTIR- Tensor 27型); 质谱仪(Bruker microTOF-QⅡ型); 核磁共振仪(Bruker DPX 400 MHz型); 微波合成仪(瑞典Biotage); 上海暗箱紫外分析仪(ZF-20D型); 四圆衍射仪(Siemens P4型)等.
试剂: DMSO-d6(内标为TMS)、CDCl3(内标为TMS)、乙酸乙酯(分析纯)、石油醚(分析纯)、乙腈(分析纯)、N-氯代丁二酰亚胺等.
3.2 实验方法
将炔烃-联烯酮(0.2 mmol)、N-氯代丁二酰亚胺(0.6 mmol)、水(1.5 equiv。)以及乙腈2.0 mL依次加入到10 mL反应瓶中, 密封加热至50 ℃, 采用薄层色谱(TLC)跟踪监测直至反应完全, 使用200~300目的硅胶, 乙酸乙酯和石油醚混合物(V:V=1:30)作为洗脱剂, 柱层析后旋蒸得到一系列纯净的白色固体产物2a~2r.
2, 4, 4-三氯-3-(2-氧代-2-苯乙基)萘-1(4H)-酮(2a):白色固体, 产率66%. m.p. 174~176 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J=7.6 Hz, 1H, ArH), 8.19~8.17 (m, 2H, ArH), 8.11~8.11 (m, 1H, ArH), 8.01~7.96 (m, 1H, ArH), 7.76~7.74 (m, 2H, ArH), 7.64~7.60 (m, 2H, ArH), 4.86 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 192.3, 175.2, 149.5, 146.9, 142.3, 136.1, 135.8, 134.4, 131.7, 130.0, 129.5, 128.8, 128.3, 126.8, 125.4, 123.3, 82.7, 43.6; IR (KBr) ν: 2992, 1697, 1674, 1448, 1318, 1269, 1214, 974, 849, 766, 711 cm-1. HRMS (APCI-TOF) calcd for C18H12Cl3O2 [M+H]+364.9903; found 364.9919.
2, 4, 4-三氯-3-[2-(4-氟苯基)-2-氧代乙基]萘-1(4H)-酮(2b):白色固体, 产率55%. m.p. 151~153 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.29~8.23 (m, 3H, ArH), 8.11~8.10 (m, 1H, ArH), 8.00~7.97 (m, 1H, ArH), 7.79~7.75 (m, 1H, ArH), 7.47~7.43 (m, 2H, ArH), 4.85 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 191.1, 175.2, 165.9 (1JCF=251.4 Hz), 146.8, 142.3, 135.8, 134.3, 132.8 (4JCF=2.8 Hz), 132.0 (3JCF=9.6 Hz), 131.7, 130.1, 126.8, 125.4, 116.5 (2JCF=21.8 Hz), 82.7, 43.5; IR (KBr) ν: 3020, 1691, 1672, 1555, 1337, 1289, 1170, 952, 837, 726, 717 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl3FO2 [M+H]+382.9809; found 382.9817.
2, 4, 4-三氯-3-[2-(4-氯苯基)-2-氧代乙基]萘-1(4H)-酮(2c):白色固体, 产率78%. m.p. 170~172 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.25~8.19 (m, 3H, ArH), 8.11~8.10 (m, 1H, ArH), 7.99 (s, 1H, ArH), 7.77 (s, 1H, ArH), 7.71~7.68 (m, 2H, ArH), 4.86 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 191.6, 175.2, 149.5, 146.7, 142.3, 139.4, 138.3, 135.8, 134.8, 130.8, 130.2, 129.6, 129.1, 126.8, 125.4, 123.3, 82.7, 43.5; IR (KBr) ν: 3018, 1697, 1675, 1507, 1320, 1276, 1094, 974, 865, 712, 692 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl4O2 [M+H]+398.9513; found 398.9527.
2, 4, 4-三氯-3-[2-(2-氯苯基)-2-氧乙基]萘-1(4H)-酮(2d):白色固体, 产率72%. m.p. 161~163 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.24 (d, J=8.0 Hz, 1H, ArH), 8.11~8.09 (m, 1H, ArH), 8.01~7.93 (m, 2H, ArH), 7.79~7.75 (m, 1H, ArH), 7.64~7.62 (m, 2H, ArH), 7.58~7.55 (m, 1H, ArH), 4.77 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 194.2, 175.2, 145.7, 142.1, 137.9, 135.9, 134.6, 133.5, 131.8, 131.3, 130.4, 130.0, 128.2, 126.8, 125.4, 82.5, 46.8; IR (KBr) ν: 3036, 1680, 1665, 1410, 1220, 1126, 1004, 954, 890, 792, 682 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl4O2 [M+ H]+ 398.9514; found 398.9534.
3-[2-(4-溴苯基)-2-氧代乙基]-2, 4, 4-三氯萘-1(4H)-酮(2e):白色固体, 产率88%. m.p. 165~167 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J=8.0 Hz, 1H, ArH), 8.13~8.10 (m, 3H, ArH), 7.99 (s, 1H, ArH), 7.84 (d, J=8.4 Hz, 2H, ArH), 7.77 (s, 1H, ArH), 4.85 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.2, 149.5, 146.7, 142.3, 135.8, 132.5, 132.0, 130.9, 130.3, 130.1, 129.4, 128.7, 126.8, 125.4, 123.3, 82.7, 43.5; IR (KBr) ν: 3026, 1698, 1675, 1585, 1397, 1319, 1270, 972, 818, 725, 710 cm-1. HRMS (APCI-TOF) calcd for C18H11BrCl3O2 [M+H]+ 442.9008; found 442.9024.
2, 4, 4-三氯-3-[2-氧代-2-(对甲苯基)乙基]萘-1-(4H)-酮(2f):白色固体, 产率82%. m.p. 168~170 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J=8.4 Hz, 1H, ArH), 8.10 (d, J=8.4 Hz, 1H, ArH), 8.07 (d, J=8.4 Hz, 2H, ArH), 8.00~7.96 (m, 1H, ArH), 7.78~7.75 (m, 1H, ArH), 7.42 (d, J=8.0 Hz, 2H, ArH), 4.81 (s, 2H, CH2), 2.43 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.2, 149.4, 147.1, 145.0, 142.3, 135.8, 133.7, 131.7, 130.0, 129.4, 129.0, 128.4, 126.8, 125.4, 123.3, 82.7, 43.4, 21.7; IR (KBr) ν: 3086, 1694, 1678, 1580, 1411, 1272, 1152, 980, 788, 706, 692 cm-1. HRMS (APCI-TOF) calcd for C19H14Cl3O2 [M+H]+ 379.0059; found 379.0071.
2, 4, 4-三氯-3-[2-氧代-2-(间甲苯基)乙基]萘-1-(4H)-酮(2g):白色固体, 产率61%. m.p. 154~156 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.22 (d, J=7.2 Hz, 1H, ArH), 8.11~8.09 (m, 1H, ArH), 8.00~7.95 (m, 3H, ArH), 7.78~7.74 (m, 1H, ArH), 7.56~7.48 (m, 2H, ArH), 4.83 (s, 2H, CH2), 2.43 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 192.3, 175.2, 149.5, 147.0, 142.3, 138.9, 138.3, 136.1, 135.8, 131.7, 130.0, 129.2, 126.8, 126.0, 125.4, 123.3, 82.7, 43.6, 21.3; IR (KBr) ν: 3031, 1694, 1674, 1583, 1400, 1324, 1184, 887, 853, 785, 707 cm-1. HRMS (APCI-TOF) calcd for C19H14Cl3O2 [M+H]+379.0059; found 379.0077.
2, 4, 4-三氯-3-[2-(4-乙基苯基)-2-氧乙基]萘-1(4H)-酮(2h):白色固体, 产率80%. m.p. 149~151 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J=8.0 Hz, 1H, ArH), 8.12 (d, J=8.0 Hz, 3H, ArH), 8.00~7.97 (m, 1H, ArH), 7.78~7.75 (m, 1H, ArH), 7.45 (d, J=8.0 Hz, 2H, ArH), 4.82 (s, 2H, CH2), 2.73 (m, 2H, CH2), 1.25~1.21 (m, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.2, 151.0, 147.1, 142.3, 135.8, 134.3, 133.9, 131.7, 130.0, 129.1, 128.8, 128.5, 126.8, 125.4, 82.7, 43.5, 28.7, 15.7; IR (KBr) ν: 3010, 1687, 1672, 1500, 1300, 1176, 1054, 984, 875, 742, 699 cm-1. HRMS (APCI-TOF) calcd for C20H16- Cl3O2 [M+H]+ 393.0216; found 393.0238.
3-[2-(4-叔丁基)苯基]-2-氧乙基-4, 4-三氯萘-1(4H)-酮(2i):白色固体, 产率73%. m.p. 158~160 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.23 (d, J=8.0 Hz, 1H, ArH), 8.12~8.09 (m, 3H, ArH), 8.00~7.96 (m, 1H, ArH), 7.78~7.74 (m, 1H, ArH), 7.62 (d, J=8.4 Hz, 2H, ArH), 4.82 (s, 2H, CH2), 1.34 (s, 9H, C4H9); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.2, 157.6, 147.1, 142.3, 135.8, 134.3, 133.6, 131.7, 130.1, 128.8, 126.8, 126.3, 125.4, 82.7, 43.5, 35.4, 31.2; IR (KBr) ν: 3016, 1689, 1675, 1400, 1240, 1146, 1034, 974, 895, 782, 690 cm-1. HRMS (APCI-TOF) calcd for C22H20Cl3O2 [M+H]+ 421.0529; found 421.0551.
2, 4, 4-氯-3-[(2-萘-1-基)-2-萘氧乙基]-1(4H)-酮(2j):白色固体, 产率64%. m.p. 158~160 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.00 (s, 1H, ArH), 8.26~8.20 (m, 2H, ArH), 8.14~8.07 (m, 3H, ArH), 8.06 (d, J=8.0 Hz, 1H, ArH), 8.01~7.97 (m, 1H, ArH), 7.79~7.67 (m, 3H, ArH), 5.00 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 192.3, 175.2, 147.1, 142.3, 135.8, 134.4, 133.4, 132.7, 131.8, 131.2, 130.2, 129.6, 129.1, 128.2, 127.7, 126.8, 125.5, 124.0, 82.8, 43.6; IR (KBr) ν: 3030, 1685, 1675, 1400, 1200, 1120, 1024, 984, 891, 796, 680 cm-1. HRMS (APCI-TOF) calcd for C22H14Cl3O2 [M+H]+ 415.0059; found 415.0070.
2, 4, 4-三氯-7-氟-3-(2-氧代-2-苯基乙基)萘-1(4H)-酮(2k):白色固体, 产率65%. m.p. 149~151 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.34~8.30 (m, 1H, ArH), 8.23~8.13 (m, 2H, ArH), 7.90~7.79 (m, 2H, ArH), 7.76~7.73 (m, 1H, ArH), 7.64~7.60 (m, 2H, ArH), 4.86 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 192.3, 174.4, 164.4 (1JCF=249.9 Hz), 147.2, 138.7, 136.1, 135.5, 134.5, 134.1, 133.4 (5JCF=8.5 Hz), 132.0 (6JCF=2.8 Hz), 129.4 (4JCF=10.1 Hz), 128.9, 128.3, 123.4 (2JCF=23.2 Hz), 112.7 (3JCF=21.7 Hz), 82.0, 43.6; IR (KBr) ν: 3022, 1689, 1679, 1300, 1235, 1110, 1010, 934, 865, 796, 680 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl3FO2 [M+H]+ 382.9809; found 382.9830.
2, 4, 4-三氯-7-氟-3-[2-氧代-2-(对甲苯基)乙基]萘- 1(4H)-酮(2l):白色固体, 产率76%. m.p. 153~155 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.33~8.29 (m, 1H, ArH), 8.07 (d, J=8.4 Hz, 2H, ArH), 7.88~7.78 (m, 2H, ArH), 7.42 (d, J=8.0 Hz, 2H, ArH), 4.81 (s, 2H, CH2), 2.42 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 191.7, 174.4, 161.8 (1JCF=233.5 Hz), 147.3, 138.7 (6JCF=3.2 Hz), 134.1, 133.4 (4JCF=8.7 Hz), 132.8, 130.0, 128.4, 127.9 (5JCF=7.6 Hz), 123.5 (3JCF=23.1 Hz), 119.4, 112.7 (2JCF=23.5 Hz), 82.0, 43.5, 21.7; IR (KBr) ν: 3002, 1680, 1670, 1310, 1215, 1070, 1005, 964, 855, 776, 660 cm-1. HRMS (APCI-TOF) calcd for C19H13Cl3FO2 [M+H]+ 396.9965; found 396.9987.
2, 4, 4, 7-四氯-3-(2-氧代-2-苯基乙基)萘-1(4H)-酮(2m):白色固体, 产率70%. m.p. 166~168 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.25 (d, J=9.6 Hz, 1H, ArH), 8.20~8.15 (m, 2H, ArH), 8.09~8.00 (m, 2H, ArH), 7.76~7.72 (m, 1H, ArH), 7.64~7.60 (m, 2H, ArH), 4.86 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 192.3, 174.2, 147.1, 136.5, 135.5, 134.5, 133.6, 132.3, 129.5, 128.9, 128.3, 127.1, 126.0, 122.1, 81.9, 43.5; IR (KBr) ν: 3008, 1687, 1677, 1407, 1300, 1216, 1044, 978, 885, 762, 672 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl4O2 [M+H]+ 398.9513; found 398.9517.
2, 4, 4, 6-四氯-3-[2-氧代-2-(对甲苯基)乙基]萘-1(4H)-酮(2n):白色固体, 产率83%. m.p. 163~165 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.22 (d, J=7.6 Hz, 1H, ArH), 8.07 (d, J=8.4 Hz, 2H, ArH), 8.00~7.95 (m, 1H, ArH), 7.79~7.73 (m, 1H, ArH), 7.42 (d, J=8.4 Hz, 2H, ArH), 4.80 (s, 2H, CH2), 2.42 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.2, 147.1, 145.0, 142.3, 135.8, 133.7, 131.72, 130.0, 129.0, 126.8, 125.4, 123.2, 82.7, 43.4, 21.7; IR (KBr) ν: 3052, 1690, 1676, 1240, 1205, 1040, 1001, 954, 875, 796, 670 cm-1. HRMS (APCI-TOF) calcd for C19H13Cl4O2 [M+H]+ 414.9640; found 414.9660.
2, 4, 4-三氯-6-氟-3-(2-氧代-2-苯基乙基)萘-1(4H)-酮(2o):白色固体, 产率84%. m.p. 167~169 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.24~8.20 (m, 1H, ArH), 8.13~8.08 (m, 2H, ArH), 7.82~7.79 (m, 1H, ArH), 7.68~7.63 (m, 1H, ArH), 7.58~7.54 (m, 2H, ArH), 7.31~7.36 (m, 1H, ArH), 4.67 (s, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ: 191.2, 174.2, 166.0 (1JCF=256.0 Hz), 145.7, 145.1 (5JCF=9.3 Hz), 136.0, 134.9, 133.9, 130.2 (4JCF=9.6 Hz), 128.9, 128.3, 122.6 (6JCF=2.9 Hz), 118.7 (3JCF=22.2 Hz), 116.2 (2JCF=24.8 Hz), 81.3, 42.9; IR (KBr) ν: 3006, 1693, 1679, 1549, 1415, 1280, 1208, 1090, 862, 754, 705 cm-1. HRMS (APCI-TOF) calcd for C18H11Cl3FO2 [M+H]+382.9809; found 382.9820.
2, 4, 4-三氯-6-甲基-3-(2-氧代-2-苯基乙基)萘-1(4H)-酮(2p):白色固体, 产率60%. m.p. 187~189 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.19~8.16 (m, 2H, ArH), 8.04 (s, 1H, ArH), 8.00 (d, J=8.0 Hz, 1H, ArH), 7.76~7.73 (m, 1H, ArH), 7.64~7.56 (m, 3H, ArH), 4.84 (s, 2H, CH2), 2.53 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 192.4, 175.0, 146.8, 146.7, 142.4, 136.1, 134.5, 134.3, 132.7, 130.0, 129.5, 128.8, 126.9, 123.2, 82.8, 43.5, 21.9; IR (KBr) ν: 3046, 1703, 1674, 1483, 1322, 1213, 1091, 921, 804, 782, 708 cm-1. HRMS (APCI-TOF) calcd for C19H14Cl3O2 [M+H]+ 379.0059; found 379.0068.
2, 4, 4-三氯-3-[2-(4-氯苯基)-2-氧代乙基]-6-甲基萘- 1(4H)-酮(2q):白色固体, 产率65%. m.p. 189~191 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.21 (s, 1H, ArH), 8.19 (s, 1H, ArH), 8.04 (s, 1H, ArH), 8.00 (d, J=8.0 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 7.68 (s, 1H, ArH), 7.58 (d, J=8.4 Hz, 1H, ArH), 4.84 (s, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ: 191.6, 174.9, 146.8, 146.4, 142.3, 139.4, 134.8, 134.4, 132.7, 130.8, 130.0, 129.6, 126.9, 123.2, 82.7, 43.5; IR (KBr) ν: 3092, 1697, 1643, 1401, 1308, 1090, 978, 821, 776, 720, 703 cm-1. HRMS (APCI-TOF) calcd for C19H13Cl4O2 [M+H]+ 412.9670; found 412.9679.
2, 4, 4-三氯-6-甲基-3-[2-氧代-2-(对甲苯基)乙基]萘- 1(4H)-酮(2r):白色固体, 产率59%. m.p. 182~183 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.09~8.02 (m, 3H, ArH), 7.99 (d, J=8.0 Hz, 1H, ArH), 7.59~7.56 (m, 1H, ArH), 7.42 (d, J=8.0 Hz, 2H, ArH), 4.79 (s, 2H, CH2), 2.53 (s, 3H, CH3), 2.43 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 191.8, 175.0, 146.8, 145.0, 142.4, 134.3, 133.7, 132.7, 129.9, 129.4, 128.9, 126.8, 123.3, 82.8, 43.4, 21.8, 21.7; HRMS (APCI-TOF) calcd for C20H16Cl3O2 [M+H]+ 393.0216; found 393.0238.
辅助材料(Supporting Information) 部分化合物的1H NMR和13C NMR图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
(a) For reviews, see: Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241.
(b) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. -
[2]
(a) Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709.
(b) Okamoto, N.; Ishikura, M.; Yanada, R. Org. Lett. 2013, 15, 2571. -
[3]
(a) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724.
(b) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907.
(c) O'Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
(d) Hayashi, N.; Ho, D. M.; Pascal, Jr., R. A. Tetrahedron Lett. 2000, 41, 4261.
(e) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431. -
[4]
(a) Moriarty, R. M. Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124.
(b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
(c) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701. -
[5]
Shen, T.; Wang, T.; Qin, C.; Jiao, N.; Angew. Chem., Int. Ed. 2013, 52, 6677. doi: 10.1002/anie.v52.26
-
[6]
(a) Wang, A.; Jiang, H. J. Am. Chem. Soc., 2008, 130, 5030.
(b) Liu, Q.; Chen, P.; Liu, G. ACS Catal. 2013, 3, 178. -
[7]
(a) Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123, 8600.
(b) Cha, K.-M.; Jo, E.-A.; Jun, C.-H. Synlett 2009, 2939. -
[8]
(a) Das, A.; Chaudhuri, R.; Liu, R.-S. Chem. Commun. 2009, 4046.
(b) Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc. 2006, 128, 11332.
(c) Qin, C.; Su, Y.; Shen, T.; Shi, X.; Jiao, N. Angew. Chem., Int. Ed. 2016, 55, 350. -
[9]
Sun, J.; Wang, F.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 3992. doi: 10.1021/jo500456d
-
[10]
(a) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294.
(b) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646. -
[11]
(a) Liang, Y.-F.; Song, S.; Ai, L.; Li, X.; Jiao, N. Green Chem. 2016, 18, 6462.
(b) Sha, H.-K.; Xu, T.; Liu, F.; Tang, B.-Z.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10415.
(c) Sha, H.-K.; Liu, F.; Lu, J.; Liu, Z.-Q.; Hao, W.-J.; Tang, J.-L.; Tu, S.-J.; Jiang, B. Green Chem. 2018, 20, 3476.
(d) Wang, L.; Shi, L.-X.; Liu, L.; Li, Z.-X.; Xu, T.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2017, 82, 3605 -
[12]
(a) Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
(b) Sun, J.; Qiu, J.-K.; Wu, Y.-N.; Hao, W.-J.; Guo, C.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 754.
(c) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang B., Angew. Chem., Int. Ed. 2017, 56, 15570.
(d) Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10791.
(e) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem. Asian J. 2018, 13, 2958.
(f) Wang, A.-F.; Hao, W.-J.; Zhu, Y.-L.; Li, G.; Zhou, P.; Tu, S.-J.; Jiang, B. ACS Omega 2018, 3, 1482. -
[13]
(a) Wang, J.-Y.; Zhou, P.; Li, G.; Hao W.-J.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 6682.
(b) Zhou, P.; Wang, J.-Y.; Zhang, T.-S.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 164.
(c) Li, H.; Hao, W.-J.; Wang, M.; Qin, X.; Tu, S.-J.; Zhou, P.; Li, G.; Wang, J.; Jiang, B. Org. Lett. 2018, 20, 4362. -
[14]
For selected examples, see: (a) Shen, Q.; G. Hammond, B. J. Am. Chem. Soc. 2002, 124, 6534.
(b) Ohno, H.; Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 5113.
(c) Siebert, M. R.; Osbourn, J. M.; Brummond, K. M.; Tantillo, D. J. J. Am. Chem. Soc. 2010, 132, 11952. -
[15]
Li, H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Front. Chem. 2018, 6, 599.
(b) Li, H.; Zhou, P.; Xie, F.; Hu, J.-Q.; Yang, S.-Z.; Wang, Y.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2018, 83, 13335.
(c) Wang, J.-Y.; Xie, F.; Hu, J.-Q.; Yang, S.-Z.; Wang, Y.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Biomol. Chem. 2018, 16, 7104.
-
[1]
-
表 1 化合物2a反应条件的优化a
Table 1. Optimization of reaction conditions for the synthesis of 2aa
Entry 1a:NCS (mole ratio) Solvent T/℃ Yieldb/% 1 1:3 CH3CN 50 66 2 1:3 DCE 50 28 3 1:3 CH3OH 50 N.D.c 4 1:3 1, 4-Dioxane 50 25 5 1:3 THF 50 Trace 6 1:3 DCM 50 30 7 1:3 DMF 50 48 8 1:3 CH3CN 60 59 9 1:3 CH3CN 40 63 10 1:3 CH3CN 30 55 11 1:2 CH3CN 50 35 12 1:3.5 CH3CN 50 58 13 1:4 CH3CN 50 52 14d 1:3 CH3CN 50 58 a Reaction condition: 1a (0.2 mmol), NCS (0.6 mmol), H2O (1.5 equiv.), solvent (2.0 mL), air conditions. b Isolated yield based on substrate 1a. c No detected (N. D.). d Argon gas. 表 2 三氯代1-萘酮衍生物2a~2r的合成
Table 2. Synthesis of trichloro-substituted naphthalene-1(4H)- ones 2a~2r
-

计量
- PDF下载量: 9
- 文章访问数: 915
- HTML全文浏览量: 93