Iron(Ⅲ) Porphyrin Catalyzed Cyclization of Ketones with Dimethyl Sulfoxide and Ammonium Acetate: One-Pot Synthesis of Pyridines

Yufeng Liu Zhongzhong Cao Miaodong Su Hui Li Meiqiang Fu Qiang Liu Weiping Luo Cancheng Guo

Citation:  Liu Yufeng, Cao Zhongzhong, Su Miaodong, Li Hui, Fu Meiqiang, Liu Qiang, Luo Weiping, Guo Cancheng. Iron(Ⅲ) Porphyrin Catalyzed Cyclization of Ketones with Dimethyl Sulfoxide and Ammonium Acetate: One-Pot Synthesis of Pyridines[J]. Chinese Journal of Organic Chemistry, 2019, 39(1): 129-136. doi: 10.6023/cjoc201809014 shu

铁卟啉催化酮和二甲亚砜以及醋酸铵的环化反应:吡啶的一步合成

    通讯作者: 郭灿城, ccguo@hnu.edu.cn
  • 基金项目:

    国家自然科学基金 21572049

    国家自然科学基金(No.21572049)资助项目

摘要: 发展了一种在铁卟啉催化下酮和二甲亚砜(DMSO)以及醋酸铵的环化反应,该反应利用DMSO作为碳源来合成不对称和对称的吡啶化合物,多种酮能够很好地和DMSO反应产生吡啶化合物,产率在30%到85%之间.该方法利用非贵金属和简单酮类化合物来合成吡啶,条件温和,操作简单.在初步的控制实验基础上,提出了该反应可能的机理.

English

  • Pyridines are important fundamental heterocycles which are found in numerous natural products, functional materials, agrochemicals and pharmaceutical drugs.[1] Molecules bearing a pyridine moiety exhibit a wide range of biological activities, such as anxiolytic, [2] antidiabetic, [3] antiviral, [4] antibacterial, [5] antileishmanial, [6] anti-inflammatory, [7] and anti-chagasic activities.[8] In addition, pyridine dervatives are extensively used as various valuable ligands (such as bipyridine and terpyridine), organic bases and catalysts.[9] As a result, the synthesis of pyridine and its derivatives has attracted the attention of members of the scientific community for more than 140 years.[10]

    In recent years, metalloporphyrins have been used as cytochrome P-450 models and have been found to be highly efficient homogeneous or heterogeneous catalysts for the oxidation reactions of organic compounds.[11] Metalloporphyrin-mediated hydrocarbon functionalization is of particular importance in biomimetic investigation and is potentially useful in organic synthesis. The epoxidation, aziridination, and cyclopropanation of alkenes and the hydroxylation and amidation of saturated C—H bonds are among the most common hydrocarbon-functionalization reactions mediated by a metalloporphyrin, which are widely believed to proceed by oxygen-, nitrogen-, and carbon-atom[12] transfer from oxo-, imido-, and carbene- metalloporphyrin active species, respectively.[13] In this field, our group has reported some work about metalloporphyrins catalyzed hydrocarbons convert into value- added functional molecules through C—O, C—N and C—C bond formation[14]. As a part of our continuous efforts for metalloporphyrin-based atom/group transfer catalysis, herein, we report the first examples of the iron(Ⅲ)-por- phyrin-catalyzed cyclization of ketones with dimethyl sulfoxide (DMSO) and ammonium acetate for the synthesis of unsymmetrical and symmetrical pyridines by employing DMSO as C4 or C6 source, respectively.[15] This method uses non-noble metals and proceeds under mild reaction conditions with operational simplicity, which thus allows the expedient and atom-economical assembly of pyridines from readily available ketones.

    We first surveyed the catalytic cyclization of ketones by various metalloporphyrins with different nitrogen sources. To our delight, acetophenone (1a) could be converted into pyridine (2a) in 72% yield with 3.0 equiv. of NH4OAc and 1.0 mol% T(p-OMe)PPFeCl in DMSO under 101 kPa O2 at 120 ℃. The results in Table 1 showed that other iron(Ⅲ)-porphyrin catalysts, including T(p-Cl)PPFeCl, T(p-Me)PPFeCl and TPPFeCl could also afford the product, but with less efficiency (Table 1, Entries 1~4). On the other hand, other metal complexes of T(p-MeO)PP such as T(p-MeO)PPCu, T(p-MOe)PPCo, T(p-MeO)PPMnCl and T(p-MeO)PPNi were also tested, and the results demon-strated that T(p-MeO)PPFeCl was the best choice (Table 1, Entries 5~8). When other nitrogen sources were used instead of NH4OAc, none showed higher efficiency than NH4OAc (Table 1, Entries 9~13). Decreased yield was observed when a lower or higher catalyst loading was applied (Table 1, Entries 14, 15).

    Table 1

    Table 1.  Optimization of reaction conditions
    下载: 导出CSV
    Entry N source Catalyst Temp./℃ Yieldb/%
    1 NH4OAc T(p-MeO)PPFeCl 120 72
    2 NH4OAc T(p-Cl)PPFeCl 120 65
    3 NH4OAc T(p-Me)PPFeCl 120 67
    4 NH4OAc TPPFeCl 120 62
    5 NH4OAc 120 12
    6 NH4OAc T(p-MeO)PPCu 120 51
    7 NH4OAc T(p-MeO)PPCo 120 38
    8 NH4OAc T(p-MeO)PPMnCl 120 42
    9 NH4OAc T(p-MeO)PPNi 120 26
    10 (NH4)2CO3 T(p-MeO)PPFeCl 120 42
    11 NH4HCO3 T(p-MeO)PPFeCl 120 40
    12 NH3•H2O T(p-MeO)PPFeCl 120 36
    13 NH4I T(p-MeO)PPFeCl 120 18
    14 HCOONH4 T(p-MeO)PPFeCl 120 65
    15 NH4OAc T(p-MeO)PPFeCl 100 47
    16 NH4OAc T(p-MeO)PPFeCl 130 70
    17c NH4OAc T(p-MeO)PPFeCl 120 63
    18d NH4OAc T(p-MeO)PPFeCl 120 69
    a Reaction conditions: acetophenone (1a, 0.5 mmol), N source (1.5 mmol), catalyst (1.0 mol%) and solvent (2 mL) for 24 h under O2 atmosphere at 120 ℃. b Isolated yield. c T(p-MeO)PPFeCl (0.5 mol%). d T(p-MeO)PPFeCl (2.0 mol%).

    Subsequently, the scope of the (hetero)aryl methyl ketones was investigated under the standard reaction conditions (Table 2). The results revealed that aryl methyl ketones bearing a variety of functional groups and substitution patterns afforded the desired products in moderate to good yields (34%~82%). As shown in Table 1, acetophenone derivatives bearing electrondonating substituents (MeO, EtO, Me) could achieve this conversion in 42%~82% yields (Table 2, Entries 1~8). Nevertheless, the acetophenone derivatives with electron-withdrawing substituents (F, Cl, Br, I, NO2, CN, CF3) could be converted into pyridines in yields ranging from 34% to 70% (Table 2, Entries 9~17). Furthermore, acetophenone bearing the same substituents at different positions had influence on the efficiency of this transformation. For example, 2- methylacetophenone gave lower yield than 4-/3- methylacetophenone (Table 2, Entries 4~6). Importantly, halogen substituents on the phenyl ring were well tolerated with this conversion, which enable a potential application in further functionalization (Table 2, Entries 9~14). Furthermore, 2-acetonaphthone and 2-acetylthiophene could also provide the desired product in moderate yield (Table 2, Eentries 18 and 19).

    Table 2

    Table 2.  Scope of acetophenones
    下载: 导出CSV
    Entry (Het)Ar 2 Yield/%
    1 Ph 2a 72
    2 4-MeOC6H4 2b 81
    3 4-EtOC6H4 2c 85
    4 4-MeC6H4 2d 78
    5 3-MeC6H4 2e 73
    6 2-MeC6H4 2f 42
    7 3, 4-(MeO)2C6H3 2g 82
    8 2, 4-(MeO)2C6H3 2h 71
    9 4-FC6H4 2i 58
    10 4-ClC6H4 2j 70
    11 4-BrC6H4 2k 66
    12 3-BrC6H4 2l 54
    13 2-BrC6H4 2m 34
    14 4-IC6H4 2n 54
    15 3-NO2C6H4 2o 35
    16 4-CNC6H4 2p 66
    17 4-CF3C6H4 2q 58
    18 2-Naphthyl 2r 68
    19 Furyl 2s 52
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-MeO)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.

    It is worth noting that the substrates of 1f, 1m and 1o could also gave the corresponding products, but the yields are only 42%, 34% and 35%, respectively. With further research, we found that the symmetrical pyridines were obtained and the results are in contrary to the previous literature which only unsymmetrical pyridines were obtained (Table 3).[15b]

    Table 3

    Table 3.  Scope of acetophenones
    下载: 导出CSV
    Entry Ar 1 Yield/%
    2a 2'b
    1 2-CH3C6H4 1f 42 (2f) 40 (2f')
    2 2-BrC6H4 1m 34 (2m) 38 (2m')
    3 3-NO2C6H4 1o 35 (2o) 30 (2o')
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-MeO)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.

    To expand the substrate scope of this transformation, α-substituent on the ketones was investigated and the results are displayed in Table 4. Surprisingly, the substitution patterns of the pyridine ring changed when propiophenone was used as a substrate instead of an aryl methyl ketone. Based on this result, we proceeded to investigate a variety of other propiophenone compounds. As expected, the electronic natue of the phenyl ring on the propiophenone compound had little impact on the efficiency of the reaction (54%~71% yields for 1t~1w). Moreover, the use of valerophenone, 1, 3-diphenylpropane-1, 3-dione or benzocyclohexanone as a substrate under the optimized conditions also gave the corresponding products 3e, 3f and 3g in moderate to good yields (54%~65%).

    Table 4

    Table 4.  Scope of α-substituent ketones
    下载: 导出CSV
    Entry R1 R2 1 3 Yieldb/%
    1 Ph Me 1t 3a 65
    2 4-MeOC6H4 Me 1u 3b 71
    3 4-MeC6H4 Me 1v 3c 68
    4 4-ClC6H4 Me 1w 3d 60
    5 Ph n-Pr 1x 3e 54
    6 Ph PhC=O 1y 3f 65
    7 CH2=CHC6H4 H 1z 0
    8 Ph Ph 1af 0
    9 1ag 3g 64
    10 1ah 0
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-OMe)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.

    In order to have a deeper understanding on the mechanism, several control experiments were conducted (Scheme 1). The reaction of hydrated hemiacetal (1ab) or 1-phenyl- 2-propen-1-one (1ac) with ammonium acetate under the standard conditions, did not lead to the desired product 2a (Scheme 1), which suggested that these two substrates were not intermediates in the reaction. To lend further support to this mechanism, we investigated the preparation and subsequent reaction of substrates 1ad and 1ae. The results revealed that 1ad and 1ae could be converted to the desired products, albeit in a lower yield (Scheme 1), which clearly confirmed that 1ad and 1ae were not the key intermediates in the transformation. The use of DMSO-d6 in the reaction showed that DMSO behaved as a source of methylene units, following the isolation of the partially deuterated products 2a-d1 and 3a-d1 (Scheme 1), which further confirmed that DMSO was a source of methylene units.

    Scheme 1

    Scheme 1.  Control experiments

    On the basis of the experimental results described above and previous literatures, [15, 16] we propose a possible mechanism for this transformation (Figure 1). The initial reaction of carbonyl group of ketones (1a) with ammonia from ammonium acetate would give intermediate A. Contrary to the previous literature of two mechanisms to obtain unsymmetrical or symmetrical product, [23] the intermediate A would undergo two pathway to give unsymmetrical or symmetrical pyridines respectively. DMSO could be protonated by acetic acid which was formed in-situ from ammonium acetate to give an activated species, which would be converted to the methylene source B. When the substrates were methyl ketones, the subsequent nucleophilic attack of B by the nitrogen atom of A would lead to the formation of intermediate C. Intermediate C would then undergo a rapid nucleophilic attack on acetophenone and through a dehydration reaction to afford D. The elimination of methanethiol, followed by sequential 6p electrocyclization and aromatization[14] reactions to provide the desired product 2a. On the other hand, when the substrates were α-substituent ketones, the subsequent nucleophilic attack of B by the α-carbon atom of A would lead to the formation of intermediate E. Intermediate E would then undergo a rapid nucleophilic attack on α-substituent ketones and through a dehydration reaction to afford F. Fi- nally, annulation and aromatization of F would then give the desired product 3a.

    Figure 1

    Figure 1.  Possible mechanism

    In summary, we have developed a novel and efficient methodology for the synthesis of diverse and functionalized pyridines in good yield by iron(Ⅲ)-porphyrin-catalyzed three-component reactions of readily available ketones with DMSO and ammonium acetate. The methodology provides an environmentally friendly, simple and regioselective access to a variety of multisubstituted pyridines. This protocol tolerates a wide range of substituents, heteroatoms, and steric environments to provide polysubstituted pyridine derivatives and forms various C—C and C—N bonds in a single procedure.

    Materials obtained from commercial suppliers were used as received unless mentioned otherwise. Products were purified by flash chromatography on silica gel (300~400 mesh), and were characterized by 1H NMR, and 13C NMR. 1H NMR spectra were recorded on 400 MHz NMR spectrometer. 13C NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals (central peak is δ 77.0 in CDCl3). High-resolution mass spectra (HRMS) were measured on an electrospray ionization (ESI) apparatus using time-of-flight (ToF) mass spectrometry.

    In a Schlenk tube of 25 mL, CH3COONH4 (1.5 mmol, 3.0 equiv.), acetophenone 1 (0.5 mmol, 1.0 equiv.) and T(p-OMe)PPFeCl (1.0 mmol%) were dissolved in DMSO (2 mL) and stirred at 120 ℃ for 24 h. After completion of the reaction. The resulting solution was cooled to room temperature. The solution was diluted with ethyl acetate (10 mL), washed with water (5 mL), extracted with ethyl acetate (5 mL×3), and dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the desired product.

    2, 4-Diphenylpyridine (2a): Yellow solid, 42 mg, 72% yield. m.p. 54~58 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.74 (d, J=5.1 Hz, 1H), 8.05 (d, J=7.7 Hz, 2H), 7.92 (s, 1H), 7.69 (d, J=7.6 Hz, 2H), 7.55~7.40 (m, 7H); 13C NMR (CDCl3, 100 MHz) δ: 158.1, 150.1, 150.0, 149.4, 139.5, 138.6, 129.2, 129.1, 128.8, 127.1, 127.0, 120.3, 118.8; IR (KBr) ν: 1605, 1593, 1578, 1540, 1467, 1387, 774, 728, 694, 610 cm-1; HRMS (EI) calcd for C17H14N: 232.1125, found 232.1123.

    2, 4-Bis(4-methoxyphenyl)pyridine (2b): White solid, 59 mg, 81% yield. m.p. 131~134 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.69 (d, J=5.0 Hz, 1H), 7.94 (d, J=7.6 Hz, 2H), 7.89 (s, 1H), 7.59 (d, J=7.6 Hz, 2H), 7.40 (d, J=5.0 Hz, 1H), 7.30 (d, J=7.7 Hz, 4H), 2.42 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 158.0, 149.9, 149.7, 149.2, 139.2, 139.1, 136.7, 135.7, 129.9, 129.5, 126.9, 119.8, 118.3, 21.3, 21.2; IR (KBr) ν: 1607, 1595, 1514, 1469, 1251, 1238, 1183, 1043, 1019, 827, 815 cm-1; HRMS (EI) calcd for C19H18NO2 292.1332, found 292.1331.

    2, 4-Bis(4-ethoxyphenyl)pyridine (2c): White solid, 68 mg, 85% yield. m.p. 135~138 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.58 (d, J=4.9 Hz, 1H), 7.90 (d, J=8.3 Hz, 2H), 7.75 (s, 1H), 7.55 (d, J=8.3 Hz, 2H), 7.28 (d, J=4.9 Hz, 1H), 6.92 (d, J=8.3 Hz, 4H), 4.02 (q, J=6.8 Hz, 4H), 1.37 (t, J=6.4 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ: 159.9, 157.6, 149.7, 148.9, 131.9, 130.6, 128.4, 128.2, 119.1, 117.6, 115.1, 114.7, 114.0, 63.7, 63.6, 14.9, 14.8; IR (KBr) ν: 2978, 1601, 1541, 1513, 1465, 1396, 1254, 1239, 1181, 1116, 1048, 828, 809 cm-1; HRMS (EI) calcd for C21H22NO2 320.1645, found 320.1647.

    2, 4-Di-p-tolylpyridine (2d): White solid, 51 mg, 78% yield. m.p. 104~106 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.69 (d, J=5.0 Hz, 1H), 7.94 (d, J=7.6 Hz, 2H), 7.89 (s, 1H), 7.59 (d, J=7.6 Hz, 2H), 7.40 (d, J=5.0 Hz, 1H), 7.30 (d, J=7.7 Hz, 4H), 2.42 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 158.0, 149.9, 149.2, 139.2, 139.1, 136.7, 135.7, 129.9, 129.5, 126.9, 119.8, 118.3, 21.3, 21.2; IR (KBr) ν: 1596, 1539, 1515, 1470, 1382, 808, 747, 527, 436 cm-1; HRMS (EI) calcd for C19H18N 260.1434, found 260.1436.

    2, 4-Di-m-tolylpyridine (2e): Yellow oil, 47 mg, 73% yield. 1H NMR (CDCl3, 400 MHz) δ: 8.71 (d, J=5.1 Hz, 1H), 7.90 (d, J=6.9 Hz, 2H), 7.82 (d, J=7.7 Hz, 1H), 7.49 (d, J=7.0 Hz, 2H), 7.43~7.36 (m, 3H), 7.26 (t, J=6.7 Hz, 2H), 2.45 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 158.2, 149.9, 149.6, 139.4, 138.8, 138.6, 138.5, 129.9, 129.8, 129.1, 128.7, 127.9, 127.8, 124.2, 124.1, 120.3, 118.9, 21.6, 21.5; IR (KBr) ν: 1594, 1531, 1508, 1462, 1372, 784, 707 cm-1; HRMS (EI) calcd for C19H18N 260.1434, found 260.1435.

    2, 4-Di-o-tolylpyridine (2f): Yellow oil, 27 mg, 42% yield. 1H NMR (CDCl3, 400 MHz) δ: 8.77 (d, J=5.0 Hz, 1H), 7.45 (d, J=7.0 Hz, 1H), 7.39 (d, J=4.5 Hz, 1H), 7.30 (t, J=5.4 Hz, 5H), 7.26 (d, J=9.2 Hz, 3H), 2.41 (d, J=6.3 Hz, 3H), 2.34 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ: 159.6, 150.3, 148.8, 140.1, 139.1, 135.8, 135.1, 130.8, 130.7, 129.8, 129.4, 128.5, 128.4, 126.2, 126.0, 124.8, 122.4, 20.5, 20.4; IR (KBr) ν: 1594, 1541, 1456, 1386, 751, 727 cm–1; HRMS (EI) calcd for C19H18N 260.1434, found 260.1438.

    2, 6-Di-o-tolylpyridine (2f'): Yellow oil, 26 mg, 40% yield. 1H NMR (CDCl3, 400 MHz) δ: 7.73 (d, J=7.7 Hz, 1H), 7.38 (d, J=8.9 Hz, 2H), 7.29 (d, J=7.7 Hz, 2H), 7.22~7.16 (m, 6H), 2.35 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 159.5, 140.6, 136.4, 135.9, 130.7, 129.9, 128.3, 125.9, 122.1, 20.6; IR (KBr) ν: 1601, 1562, 1457, 1374, 767 cm-1; HRMS (EI) calcd for C19H18N 260.1434, found 260.1435.

    2, 4-Bis(3, 4-dimethoxyphenyl)pyridine (2g): Yellow solid, 72 mg, 82% yield. m.p. 111~113 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.67 (d, J=5.0 Hz, 1H), 7.84 (s, 1H), 7.71 (s, 1H), 7.56 (d, J=8.3 Hz, 1H), 7.38 (d, J=5.0 Hz, 1H), 7.28 (d, J=8.1 Hz, 1H), 7.19 (s, 1H), 6.99 (t, J=7.8 Hz, 2H), 4.02 (s, 3H), 3.98 (s, 3H), 3.95 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 157.6, 150.0, 150.1, 149.7, 149.5, 149.3, 149.2, 132.4, 131.3, 119.8, 119.5, 117.9, 111.6, 111.1, 110.2, 110.1, 56.2, 56.1, 56.0, 56.0; IR (KBr) ν: 1597, 1543, 1466, 1385, 1237, 1110, 1057, 982, 943, 815 cm-1; HRMS (EI) calcd for C21H22NO4 352.1543, found 352.1548.

    2, 4-bis(2, 4-dimethoxyphenyl)pyridine (2h): Yellow solid, 62 mg, 71% yield. m.p. 115~118 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.65 (d, J=5.1 Hz, 1H), 7.90 (s, 1H), 7.74 (d, J=8.5 Hz, 1H), 7.35 (dd, J=14.4, 6.7 Hz, 2H), 6.60 (dd, J=21.2, 6.4 Hz, 4H), 3.85 (s, 6H), 3.83 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 161.4, 161.3, 158.1, 157.9, 155.5, 148.5, 146.1, 132.1, 131.3, 125.3, 122.3, 122.0, 121.0, 105.0, 99.1, 98.9, 55.7, 55.6, 55.5, 55.4; IR (KBr) ν: 1592, 1536, 1451, 1391, 1232, 1121, 1050, 976, 938, 810 cm-1; HRMS (EI) calcd for C21H22NO4 352.1543, found 352.1547.

    2, 4-Bis(4-fluorophenyl)pyridine (2i): White solid, 39 mg, 58% yield, m.p. 78~81 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.62 (d, J=5.1 Hz, 1H), 7.95 (dd, J=8.0, 5.7 Hz, 2H), 7.74 (s, 1H), 7.57 (dd, J=7.9, 5.6 Hz, 2H), 7.31 (d, J=5.1 Hz, 1H), 7.10 (q, J=8.7 Hz, 4H); 13C NMR (CDCl3, 100 MHz) δ: 164.8 (d, J=13.5 Hz), 162.3 (d, J=14.2 Hz), 157.1, 150.1, 148.5, 135.4 (d, J=3.0 Hz), 134.5 (d, J=3.1 Hz), 128.9, 128.8, 120.0, 118.3, 116.2 (d, J=21.7 Hz), 115.7 (d, J=21.6 Hz); IR (KBr) ν: 1609, 1514, 1473, 1224, 1157, 816, 556 cm-1; HRMS (EI) calcd for C17H12F2N 268.0932, found 268.0936.

    2, 4-Bis(4-chlorophenyl)pyridine (2j): White solid, 52 mg, 70% yield. m.p. 101~104 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.72 (d, J=5.1 Hz, 1H), 7.98 (d, J=8.1 Hz, 2H), 7.84 (s, 1H), 7.61 (d, J=8.0 Hz, 2H), 7.47 (t, J=7.9 Hz, 4H), 7.41 (d, J=5.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 157.0, 150.3, 148.3, 137.6, 136.8, 135.5, 135.4, 129.4, 129.0, 128.4, 128.3, 120.3, 118.3; IR (KBr) ν: 1598, 1542, 1495, 1463, 1417, 1376, 1090, 1011, 816, 753 cm-1; HRMS (EI) calcd for C17H12Cl2N 300.0341, found 300.0343.

    2, 4-Bis(4-bromophenyl)pyridine (2k): White solid, 64 mg, 66% yield. m.p. 137~139 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.72 (d, J=5.0 Hz, 1H), 7.92 (d, J=8.3 Hz, 2H), 7.84 (s, 1H), 7.63 (t, J=8.4 Hz, 4H), 7.54 (d, J=8.2 Hz, 2H), 7.43~7.39 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ: 157.0, 150.3, 148.4, 138.1, 137.2, 132.4, 132.0, 128.7, 128.6, 123.8, 123.7, 120.3, 118.2; IR (KBr) ν: 1593, 1537, 1375, 1071, 1006, 812 cm-1; HRMS (EI) calcd for C17H12Br2N 387.9331, found 387.9334.

    2, 4-Bis(3-bromophenyl)pyridine (2l): White solid, 53 mg, 54% yield. m.p. 94~96 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.73 (t, J=7.9 Hz, 1H), 8.21 (s, 1H), 7.97 (d, J=7.8 Hz, 1H), 7.82 (d, J=9.1 Hz, 2H), 7.64~7.53 (m, 3H), 7.39 (dt, J=15.4, 6.3 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 156.64, 150.32, 148.10, 141.16, 140.37, 132.16, 130.72, 130.35, 130.17, 130.15, 125.77, 125.60, 123.33, 123.14, 120.71, 118.67; IR (KBr) ν: 1591, 1542, 1462, 783, 706 cm-1; HRMS (EI) calcd for C17H12Br2N 387.9331, found 387.9335.

    2, 4-Bis(2-bromophenyl)pyridine (2m): White solid, 33 mg, 34% yield. m.p. 124~126 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.81 (d, J=5.1 Hz, 1H), 7.72~7.67 (m, 3H), 7.62 (d, J=7.8 Hz, 1H), 7.45~7.37 (m, 4H), 7.29~7.23 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ: 158.0, 148.9, 140.7, 139.8, 133.5, 133.4, 132.3, 131.6, 130.9, 130.0, 129.9, 127.8, 127.6, 125.6, 123.2, 121.9, 121.8; IR (KBr) ν: 1601, 1564, 1542, 1458, 1432, 1387, 1076, 1023, 899, 755 cm-1; HRMS (EI) calcd for C17H12Br2N 387.9331, found 387.9336.

    2, 6-Bis(2-bromophenyl)pyridine (2m'): Yellow oil, 37 mg, 38% yield. 1H NMR (CDCl3, 400 MHz) δ: 7.84 (t, J=7.8 Hz, 1H), 7.70~7.58 (m, 6H), 7.40 (t, J=7.5 Hz, 2H), 7.24 (t, J=7.7 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ: 157.9, 141.2, 135.9, 133.3, 131.8, 129.8, 127.6, 123.4, 121.9; IR (KBr) ν: 1637, 1384, 1184, 1126, 800, 688, 618 cm–1; HRMS (EI) calcd for C17H12Br2N 387.9331, found 387.9333.

    2, 4-Bis(4-iodophenyl)pyridine (2n): White solid, 65mg, 54% yield. m.p. 171~173 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.71 (d, J=4.7 Hz, 1H), 7.91 (d, J=8.3 Hz, 2H), 7.83 (s, 1H), 7.62 (t, J=8.1 Hz, 4H), 7.53 (d, J=8.3 Hz, 2H), 7.40 (d, J=3.6 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 157.01, 150.29, 148.36, 138.05, 137.21, 132.39, 131.98, 128.65, 128.60, 123.75, 123.72, 120.28, 118.17; IR (KBr) ν: 1596, 1539, 1372, 1001, 809 cm-1; HRMS (EI): calculated for C17H12I2N 483.9054, found 483.9058.

    2, 4-Bis(3-nitrophenyl)pyridine (2o): White solid, 28 mg, 35% yield. m.p. 194~197 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.94 (s, 1H), 8.87 (d, J=5.0 Hz, 1H), 8.57 (s, 1H), 8.46 (d, J=7.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 8.32 (d, J=8.1 Hz, 1H), 8.10~8.02 (m, 2H), 7.80~7.68 (m, 2H), 7.59 (d, J=4.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 155.9, 150.8, 148.9, 148.9, 147.5, 140.5, 139.8, 133.1, 132.9, 130.4, 129.9, 124.1, 124.0, 122.1, 122.0, 121.3, 118.7; IR (KBr) ν: 1632, 1599, 1530, 1353, 815, 730, 677 cm-1; HRMS (EI) calcd for C17H12N3O4 322.0822, found 322.0825.

    2, 6-Bis(3-nitrophenyl)pyridine (2o'): White solid, 24mg, 30% yield. m.p. 162~165 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.96 (s, 2H), 8.55 (d, J=8.8 Hz, 2H), 8.32 (d, J=8.0 Hz, 2H), 7.99 (d, J=7.8 Hz, 1H), 7.89~7.83 (m, 2H), 7.72 (t, J=8.0 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ: 154.8, 148.9, 140.6, 138.5, 132.9, 130.0, 124.0, 121.8, 120.0; IR (KBr) ν: 1608, 1572, 1517, 1457, 1374, 1332, 786, 692 cm-1; HRMS (EI) calcd for C17H12N3O4 322.0822, found 322.0824.

    4, 4'-(Pyridine-2, 4-diyl)dibenzonitrile (2p): White solid, 46 mg, 66% yield, m.p. 175~178 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.85 (d, J=4.7 Hz, 1H), 8.19 (d, J=8.1 Hz, 2H), 7.94 (d, J=6.2 Hz, 1H), 7.81 (t, J=7.1 Hz, 6H), 7.53 (d, J=4.5 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 156.26, 150.80, 147.86, 142.98, 142.49, 133.04, 132.69, 132.63, 127.91, 127.65, 127.53, 121.36, 119.11, 113.16, 112.92; IR (KBr) ν: 2226, 1587, 1539, 1489, 1471, 1423, 1368, 1084, 818 cm-1; HRMS (EI) calcd for C17H12N3 282.1086, found 282.1087.

    2, 4-Bis(4-(trifluoromethyl)phenyl)pyridine (2q): White solid, 53 mg, 58% yield, m.p. 69~70 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.81 (d, J=5.0 Hz, 1H), 8.17 (d, J=8.1 Hz, 2H), 7.95 (s, 1H), 7.80~7.75 (m, 6H), 7.51 (d, J=5.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 156.8, 150.5, 148.3, 142.3, 141.8, 138.0, 131.4 (d, J=15.3 Hz), 131.1 (d, J=15.1 Hz), 127.6, 127.4, 126.2 (q, J=3.7 Hz), 125.8 (q, J=3.8 Hz), 121.1, 119.8, 119.1; IR (KBr) ν: 1629, 1551, 1492, 1471, 1425, 1382, 1324, 1176, 830 cm-1; HRMS (EI) calcd for C19H12F6N 368.0868, found 368.0869.

    2, 4-Di(naphthalen-2-yl)pyridine (2r): Yellow solid, 56 mg, 68% yield, m.p. 110~113 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.81 (d, J=5.0 Hz, 1H), 8.57 (s, 1H), 8.22 (d, J=8.6 Hz, 1H), 8.17 (s, 2H), 7.95 (t, J=9.1 Hz, 4H), 7.90~7.84 (m, 2H), 7.80 (d, J=8.5 Hz, 1H), 7.57~7.48 (m, 5H); 13C NMR (CDCl3, 100 MHz) δ: 157.9, 150.1, 149.5, 136.6, 135.7, 133.8, 133.6, 133.5, 129.0, 128.8, 128.6, 128.5, 127.8, 127.7, 126.9, 126.8, 126.7, 126.6, 126.6, 126.4, 124.7, 124.7, 120.6, 119.3; IR (KBr) ν: 1632, 1590, 1547, 828, 812, 756, 480 cm-1; HRMS (EI) calcd for C25H18N 332.1434, found 332.1436.

    2, 4-Di(thiophen-2-yl)pyridine (2s): Yellow solid, 32 mg, 52% yield. m.p. 55~58 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.54 (d, J=5.2 Hz, 1H), 7.83 (s, 1H), 7.68 (d, J=3.2 Hz, 1H), 7.55 (t, J=5.0 Hz, 1H), 7.44 (dd, J=12.1, 6.2 Hz, 2H), 7.35 (d, J=5.1 Hz, 1H), 7.19~7.12 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ: 153.1, 145.0, 144.4, 142.3, 141.1, 128.5, 128.1, 127.9, 127.3, 125.6, 124.9, 118.4, 115.1; IR (KBr) ν: 1594, 1539, 1470, 1422, 854, 826, 738, 709 cm-1; HRMS (EI) calcd for C13H10S2N 224.0249, found 224.0252.

    3, 5-Dimethyl-2, 6-diphenylpyridine (3a): White solid, 42 mg, 65% yield, m.p. 128~131 ℃; 1H NMR (CDCl3, 400 MHz) δ: 7.58 (d, J=7.4 Hz, 4H), 7.47 (s, 1H), 7.42 (t, J=7.4 Hz, 4H), 7.35 (t, J=7.2 Hz, 2H), 2.37 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 155.8, 141.2, 140.6, 129.3, 129.2, 128.1, 127.7, 19.6; IR (KBr) ν: 1441, 1420, 1390, 775, 763, 702, 607 cm-1; HRMS (EI) calcd for C19H18N 260.1434, found 260.1437.

    2, 6-Bis(4-methoxyphenyl)-3, 5-dimethylpyridine (3b): White solid, 57 mg, 71% yield. m.p. 108~110 ℃; 1H NMR (CDCl3, 400 MHz) δ: 7.46 (d, J=8.0 Hz, 4H), 7.35 (s, 1H), 6.86 (d, J=8.1 Hz, 4H), 3.75 (s, 6H), 2.29 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 159.3, 155.3, 141.3, 133.2, 130.5, 128.6, 113.5, 55.3, 19.8; IR (KBr) ν: 1609, 1512, 1461, 1427, 1248, 1176, 1029, 837 cm-1; HRMS (EI) calcd for C21H22NO2 320.1645, found 320.1647.

    3, 5-Dimethyl-2, 6-di-p-tolylpyridine (3c): Yellow oil, 49 mg, 68% yield. m.p. 100~103 ℃; 1H NMR (CDCl3, 400 MHz) δ: 7.40 (d, J=7.7 Hz, 4H), 7.35 (s, 1H), 7.14 (d, J=7.8 Hz, 4H), 2.30 (s, 6H), 2.28 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 155.7, 141.2, 137.3, 132.1, 129.9, 129.2, 128.7, 21.3, 19.7; IR (KBr) ν: 1621, 1534, 1426, 908, 826, 732 cm-1; HRMS (EI) calcd for C21H22N 288.1747, found 288.1748.

    2, 6-Bis(4-chlorophenyl)-3, 5-dimethylpyridine (3d): White solid, 49 mg, 60% yield. m.p. 138~139 ℃; 1H NMR (CDCl3, 400 MHz) δ: 7.51 (d, J=8.0 Hz, 4H), 7.49 (s, 1H), 7.40 (d, J=7.7 Hz, 4H), 2.36 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 154.6, 141.6, 138.7, 133.9, 130.6, 129.5, 128.4, 19.6; IR (KBr) ν: 1608, 1557, 1495, 1454, 1093, 831, 767 cm-1; HRMS (EI) calcd for C19H16NCl2 328.0654, found 328.0656.

    2, 6-Diphenyl-3, 5-dipropylpyridine (3e): White solid, 42 mg, 54% yield. m.p. 139~142 ℃; 1H NMR (CDCl3, 400 MHz) δ: 7.52 (d, J=7.5 Hz, 4H), 7.41 (t, J=7.3 Hz, 4H), 7.38~7.32 (m, 2H), 2.68~2.60 (m, 4H), 1.65~1.53 (m, 4H), 0.90 (t, J=7.3 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ: 155.6, 139.1, 134.2, 134.1, 129.2, 128.1, 127.7, 34.2, 24.2, 14.0; IR (KBr) ν: 2968, 1437, 1372, 775, 736, 699, 643 cm-1; HRMS (EI) calcd for C23H26N 316.2060, found 316.2058.

    (2, 6-Diphenylpyridine-3, 5-diyl)bis(phenylmethanone) (3f): White solid, 71 mg, 65% yield, m.p. 181~184 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.05 (s, 1H), 7.74 (d, J=7.8 Hz, 4H), 7.72~7.66 (m, 4H), 7.46 (t, J=7.3 Hz, 2H), 7.32 (t, J=7.8 Hz, 4H), 7.30~7.26 (m, 6H); 13C NMR (CDCl3, 100 MHz) δ: 196.7, 158.1, 138.9, 138.6, 136.4, 133.6, 131.9, 129.9, 129.6, 129.5, 128.5, 128.4; IR (KBr) ν: 1663, 1594, 1528, 1320, 1247, 1008, 911, 766, 748, 725, 712, 689 cm-1; HRMS (EI) calcd for C31H22NO2 440.1645, found 440.1647.

    5, 6, 8, 9-Tetrahydrodibenzo[c, h]acridine (3g): Yellow solid, 45 mg, 64% yield. m.p. 163~166 ℃; 1H NMR (CDCl3, 400 MHz) δ: 8.51 (d, J=7.6 Hz, 2H), 7.39 (t, J=7.5 Hz, 2H), 7.30 (t, J=7.3 Hz, 3H), 7.23 (t, J=6.2 Hz, 2H), 2.94 (s, 8H); 13C NMR (CDCl3, 100 MHz) δ: 150.4, 137.9, 135.3, 135.0, 130.6, 128.6, 127.7, 127.1, 125.0, 28.3, 27.9; IR (KBr) ν: 2922, 2832, 1552, 1435, 1418, 1237, 801, 747, 721 cm-1; HRMS (EI) calcd for C31H22NO2 284.1434, found 284.1435.

    Supporting Information    1H NMR and 13C NMR spectra for all products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.

    1. [1]

      (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, Wiley-VCH, Weinheim, 2003.
      (b) Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. Comprehensive Heterocyclic Chemistry, Elsevier, Oxford, 2008.
      (c) Joule, J. A.; Mills, K. Heterocyclic Chemistry, Wiley, Chichester, 2010.

    2. [2]

      (a) Forbes, I. T.; Johnson, C. N.; Jones, G. E.; Loudon, J.; Nicholass, J. M.; Thompson, M.; Upton, N. J. Med. Chem. 1990, 33, 2640.
      (b) Zhmurenko, L. A.; Molodavkin, G. M.; Voronina, T. A.; Lezina, V. P. Pharm. Chem. J. 2012, 46, 15.

    3. [3]

      Bahekar, R. H.; Jain, M. R.; Jadav, P. A.; Prajapati, V. M.; Patel, D. N.; Gupta, A. A.; Sharma, A.; Tom, R.; Bandyopadhya, D.; Modi, H.; Patel, P. R. Bioorg. Med. Chem. 2007, 15, 6782.

    4. [4]

      Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Eur. J. Med. Chem. 1991, 26, 13. doi: 10.1016/0223-5234(91)90208-5

    5. [5]

      Zhuravel, I. O.; Kovalenko, S. M.; Ivachtchenko, A. V.; Balakin K. V.; Kazmirchuk, V. V. Bioorg. Med. Chem. Lett. 2005, 15, 5483. doi: 10.1016/j.bmcl.2005.08.081

    6. [6]

      (a) Musonda, C. C.; Whitlock, G. A.; Witty, M. J.; Brun, R.; Kaiser, M. Bioorg. Med. Chem. Lett. 2009, 19, 401.
      (b) Moreno, D.; Plano, D.; Baquedano, Y.; Jimeez-Ruiz, A.; Palop, J. A.; Sanmartn, C. Parasitol. Res. 2011, 108, 233.

    7. [7]

      Rupert, K. C.; Henry, J. R.; Dodd, J. H.; Wadsworth, S. A.; Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. J. Bioorg. Med. Chem. Lett. 2003, 13, 347. doi: 10.1016/S0960-894X(02)01020-X

    8. [8]

      Kouznetsov, V. V.; Mendez, L. Y. V.; Tibaduiza, B.; Ochoa, C.; Pereira, D. M.; Ruiz, J. J. N.; Portillo, C. F.; Serrano, S. M.; Barrio, A. G.; Bahsas, A.; Amaro-Luis, J. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 127. doi: 10.1002/(ISSN)1521-4184

    9. [9]

      (a) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745.
      (b) Rycke, N. D.; Couty, F.; David, O. R. P. Chem.-Eur. J. 2011, 17, 12852.

    10. [10]

      (a) Allais, C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Chem. Rev. 2014, 114, 10829.
      (b) Zhao, M. N.; Hui, R. R.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Org. Lett. 2014, 16, 3082.
      (c) Bai, Y.; Tang, L. C.; Huang, H. W.; Deng, G. J. Org. Biomol. Chem. 2015, 13, 4404.
      (d) Yan, Y. Z.; Li, H. Y.; Li, Z.; Niu, B.; Shi, M. M.; Liu, Y. Q. J. Org. Chem. 2017, 82, 8628.

    11. [11]

      (a) Meunier, B. Biomimetic Oxidations Mediated by Metal Complexes, Imperial College Press, London, 2000.
      (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
      (c) Zhou, X. T.; Ji, H. B.; Pei, L. X.; She, Y. B.; Xu, J. C.; Wang, L. F. Chin. J. Org. Chem. 2007, 27, 1039(in Chinese).
      (周贤太, 纪红兵, 裴丽霞, 佘远斌, 徐建昌, 王乐夫, 有机化学, 2007, 27, 1039.)

    12. [12]

      (a) Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose, E. J. Am. Chem. Soc. 1999, 121, 460.
      (b) Yu, X. Q.; Huang, J. S.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2000, 122, 5337.
      (c) Au, S. M.; Huang, J. S.; Yu, W. Y.; Fung, W. H.; Che, C. M. J. Am. Chem. Soc. 1999, 121, 9120.

    13. [13]

      (a) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M. J. Am. Chem. Soc. 2001, 123, 4843.
      (b) Bartoli, J. F.; Mansuy, V. M.; Barch-Ozette, K. L.; Palacio, M.; Battioni, P.; Mansuy, D. Chem. Commun. 2000, 827.
      (c) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun. 2000, 531.
      (d) Yu, W. Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M. Org. Lett. 2000, 2, 2233.

    14. [14]

      (a) Li, Y. F.; Guo, C, C.; Yan, X. H.; Liu, Q. J. Porphyrins Phthalocyanines 2006, 10, 942.
      (b) Jiang, Q.; Sheng, W. B.; Tian, M.; Tang, J. S.; Guo, C. C. Eur. J. Org. Chem. 2013, 10, 1861.
      (c) Sheng, W. B.; Jiang, Q.; Luo, W. P.; Guo, C. C. J. Org. Chem. 2013, 78, 5691.

    15. [15]

      (a) Pan, X. J.; Liu, Q.; Chang, L. M.; Yuan, G. Q. RSC Adv. 2015, 5, 51183.
      (b) Wu, X.; Zhang, J. H.; Liu, S.; Gao, Q. H.; Wu, A. X. Adv. Synth. Catal. 2016, 358, 218.

    16. [16]

      Liu, Y. F.; Ji, P. Y.; Xu, J. W.; Hu, Y. Q.; Liu, Q.; Luo, W. P.; Guo, C. C. J. Org. Chem. 2017, 82, 7159. doi: 10.1021/acs.joc.7b00619

  • Scheme 1  Control experiments

    Figure 1  Possible mechanism

    Table 1.  Optimization of reaction conditions

    Entry N source Catalyst Temp./℃ Yieldb/%
    1 NH4OAc T(p-MeO)PPFeCl 120 72
    2 NH4OAc T(p-Cl)PPFeCl 120 65
    3 NH4OAc T(p-Me)PPFeCl 120 67
    4 NH4OAc TPPFeCl 120 62
    5 NH4OAc 120 12
    6 NH4OAc T(p-MeO)PPCu 120 51
    7 NH4OAc T(p-MeO)PPCo 120 38
    8 NH4OAc T(p-MeO)PPMnCl 120 42
    9 NH4OAc T(p-MeO)PPNi 120 26
    10 (NH4)2CO3 T(p-MeO)PPFeCl 120 42
    11 NH4HCO3 T(p-MeO)PPFeCl 120 40
    12 NH3•H2O T(p-MeO)PPFeCl 120 36
    13 NH4I T(p-MeO)PPFeCl 120 18
    14 HCOONH4 T(p-MeO)PPFeCl 120 65
    15 NH4OAc T(p-MeO)PPFeCl 100 47
    16 NH4OAc T(p-MeO)PPFeCl 130 70
    17c NH4OAc T(p-MeO)PPFeCl 120 63
    18d NH4OAc T(p-MeO)PPFeCl 120 69
    a Reaction conditions: acetophenone (1a, 0.5 mmol), N source (1.5 mmol), catalyst (1.0 mol%) and solvent (2 mL) for 24 h under O2 atmosphere at 120 ℃. b Isolated yield. c T(p-MeO)PPFeCl (0.5 mol%). d T(p-MeO)PPFeCl (2.0 mol%).
    下载: 导出CSV

    Table 2.  Scope of acetophenones

    Entry (Het)Ar 2 Yield/%
    1 Ph 2a 72
    2 4-MeOC6H4 2b 81
    3 4-EtOC6H4 2c 85
    4 4-MeC6H4 2d 78
    5 3-MeC6H4 2e 73
    6 2-MeC6H4 2f 42
    7 3, 4-(MeO)2C6H3 2g 82
    8 2, 4-(MeO)2C6H3 2h 71
    9 4-FC6H4 2i 58
    10 4-ClC6H4 2j 70
    11 4-BrC6H4 2k 66
    12 3-BrC6H4 2l 54
    13 2-BrC6H4 2m 34
    14 4-IC6H4 2n 54
    15 3-NO2C6H4 2o 35
    16 4-CNC6H4 2p 66
    17 4-CF3C6H4 2q 58
    18 2-Naphthyl 2r 68
    19 Furyl 2s 52
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-MeO)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.
    下载: 导出CSV

    Table 3.  Scope of acetophenones

    Entry Ar 1 Yield/%
    2a 2'b
    1 2-CH3C6H4 1f 42 (2f) 40 (2f')
    2 2-BrC6H4 1m 34 (2m) 38 (2m')
    3 3-NO2C6H4 1o 35 (2o) 30 (2o')
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-MeO)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.
    下载: 导出CSV

    Table 4.  Scope of α-substituent ketones

    Entry R1 R2 1 3 Yieldb/%
    1 Ph Me 1t 3a 65
    2 4-MeOC6H4 Me 1u 3b 71
    3 4-MeC6H4 Me 1v 3c 68
    4 4-ClC6H4 Me 1w 3d 60
    5 Ph n-Pr 1x 3e 54
    6 Ph PhC=O 1y 3f 65
    7 CH2=CHC6H4 H 1z 0
    8 Ph Ph 1af 0
    9 1ag 3g 64
    10 1ah 0
    a Standard conditions: ketones (0.5 mmol), NH4OAc (3.0 equiv.), T(p-OMe)- PPFeCl (1.0 mol%), DMSO (2.0 mL), 120 ℃ for 24 h. b Isolated yield.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  1010
  • HTML全文浏览量:  136
文章相关
  • 发布日期:  2019-01-25
  • 收稿日期:  2018-09-07
  • 修回日期:  2018-11-29
  • 网络出版日期:  2018-01-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章