1,3-丁二烯热裂解的动力学计算与模型研究

杜鸟锋 甯红波 李泽荣 张其翼 李象远

引用本文: 杜鸟锋, 甯红波, 李泽荣, 张其翼, 李象远. 1,3-丁二烯热裂解的动力学计算与模型研究[J]. 物理化学学报, 2016, 32(2): 453-464. doi: 10.3866/PKU.WHXB201512071 shu
Citation:  DU Niao-Feng, NING Hong-Bo, LI Ze-Rong, ZHANG Qi-Yi, LI Xiang-Yuan. Kinetic Calculation and Modeling Study of 1,3-Butadiene Pyrolysis[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 453-464. doi: 10.3866/PKU.WHXB201512071 shu

1,3-丁二烯热裂解的动力学计算与模型研究

    通讯作者: 李泽荣, 张其翼; 李泽荣, 张其翼
  • 基金项目:

    国家自然科学基金(91441114,91441132)资助项目 (91441114,91441132)

摘要: 1,3-丁二烯是碳氢燃料燃烧和裂解过程中生成的一种重要产物,也是形成多环芳烃(PAHs)的一种重要前驱体。目前,关于1,3-丁二烯燃烧实验以及机理的研究较多,但是其热裂解机理的研究较少。本文在B3LYP/CBSB7 水平下对1,3-丁二烯裂解过程中相关反应的反应物、产物以及过渡态进行了几何结构优化和频率计算,并通过组合方法CBS-QB3 计算得到了单点能和热力学参数。对于紧致过渡态的反应和无能垒反应,分别采用过渡态理论(TST)和可变反应坐标过渡态理论(VRC-TST)计算其高压极限条件下的反应速率常数。计算得到的反应速率常数与已有文献报导的结果吻合较好。通过量子化学计算,对Hidaka等人提出1,3-丁二烯的热裂解机理模型进行了更新和改进:更新后的机理模型包含45 个物种和224 步反应,并对更新后的机理模型进行了模拟验证。结果表明,更新的机理模型能更好地预测1,3-丁二烯激波管裂解实验过程中C2H2、1-丁烯-3-炔(C4H4)以及苯(C6H6)主要产物的浓度分布,为进一步完善核心机理(C0-C4)模型提供了可靠的热、动力学参数。

English

    1. [1]

      (1) Yao, T.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (7), 1385. [姚通, 钟北京. 物理化学学报, 2013, 29 (7), 1385.] doi: 10.3866/PKU.WHXB201304123(1) Yao, T.; Zhong, B. J. Acta Phys. -Chim. Sin. 2013, 29 (7), 1385. [姚通, 钟北京. 物理化学学报, 2013, 29 (7), 1385.] doi: 10.3866/PKU.WHXB201304123

    2. [2]

      (2) Zeng, M. R.; Yuan, W. H.; Wang, Y. Z.; Zhou, W. X.; Zhang, L.D.; Qi, F.; Li, Y. Y. Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002(2) Zeng, M. R.; Yuan, W. H.; Wang, Y. Z.; Zhou, W. X.; Zhang, L.D.; Qi, F.; Li, Y. Y. Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002

    3. [3]

      (3) Hughes, K.; Meek, M. E.; Walker, M.; Beauchamp, R. 1, 3-Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland, 2001; pp 1-73.(3) Hughes, K.; Meek, M. E.; Walker, M.; Beauchamp, R. 1, 3-Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland, 2001; pp 1-73.

    4. [4]

      (4) Vaughan, W. E. J. Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ja01349a008(4) Vaughan, W. E. J. Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ja01349a008

    5. [5]

      (5) Kistiakovsky, G. B.; Ransom, W.W. J. Chem. Phys. 1939, 7, 725. doi: 10.1063/1.1750519(5) Kistiakovsky, G. B.; Ransom, W.W. J. Chem. Phys. 1939, 7, 725. doi: 10.1063/1.1750519

    6. [6]

      (6) Harkness, J. B.; Kistiakowski, G. B.; Mears, W. H. J. Chem. Phys. 1937, 5, 682. doi: 10.1063/1.1750100(6) Harkness, J. B.; Kistiakowski, G. B.; Mears, W. H. J. Chem. Phys. 1937, 5, 682. doi: 10.1063/1.1750100

    7. [7]

      (7) Granata, S.; Faravelli, T.; Ranzi, E.; Olten, N.; Senkan, S.Combust. Flame 2002, 131, 273. doi: 10.1016/S0010-2180(02)00407-8(7) Granata, S.; Faravelli, T.; Ranzi, E.; Olten, N.; Senkan, S.Combust. Flame 2002, 131, 273. doi: 10.1016/S0010-2180(02)00407-8

    8. [8]

      (8) Dagaut, P.; Cathonnet, M. Combust. Sci. Technol. 1998, 140, 225. doi: 10.1080/00102209808915773(8) Dagaut, P.; Cathonnet, M. Combust. Sci. Technol. 1998, 140, 225. doi: 10.1080/00102209808915773

    9. [9]

      (9) Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.(9) Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.

    10. [10]

      (10) Tsang, W. Chemical Activation Reactions in the HeptaneCombustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute ofAeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.(10) Tsang, W. Chemical Activation Reactions in the HeptaneCombustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute ofAeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.

    11. [11]

      (11) Laskin, A.; Wang, H.; Law, C. K. Int. J. Chem. Kinet. 2000, 32, 589.(11) Laskin, A.; Wang, H.; Law, C. K. Int. J. Chem. Kinet. 2000, 32, 589.

    12. [12]

      (12) Peukert, S.; Braun-Unkhoff, M.; Naumann, C. HighTemperature Kinetics of the Pyrolysis of 1, 3-Butadiene and 2-Butyne. In Fundamental Physical and Chemical Kinetics, Proceedings of the European Combustion Meeting, Vienna, Austria, April 14-17, 2009.(12) Peukert, S.; Braun-Unkhoff, M.; Naumann, C. HighTemperature Kinetics of the Pyrolysis of 1, 3-Butadiene and 2-Butyne. In Fundamental Physical and Chemical Kinetics, Proceedings of the European Combustion Meeting, Vienna, Austria, April 14-17, 2009.

    13. [13]

      (13) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J.W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. doi: 10.1063/1.477924(13) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J.W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. doi: 10.1063/1.477924

    14. [14]

      (14) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117, 2718. doi: 10.1021/jp312712p(14) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2013, 117, 2718. doi: 10.1021/jp312712p

    15. [15]

      (15) Xu, C.; Shoaibi, A. S. A.; Wang, C. G.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2011, 115, 10470.(15) Xu, C.; Shoaibi, A. S. A.; Wang, C. G.; Carstensen, H. H.; Dean, A. M. J. Phys. Chem. A 2011, 115, 10470.

    16. [16]

      (16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.(16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.

    17. [17]

      (17) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304(17) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    18. [18]

      (18) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785(18) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    19. [19]

      (19) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.456010(19) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.456010

    20. [20]

      (20) Sirjean, B.; Fournet, R. J. Phys. Chem. A 2012, 116, 6675. doi: 10.1021/jp303680h(20) Sirjean, B.; Fournet, R. J. Phys. Chem. A 2012, 116, 6675. doi: 10.1021/jp303680h

    21. [21]

      (21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182(21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182

    22. [22]

      (22) Gaithersburg, M. D. NIST Computational ChemistryComparison and Benchmark Database; National Institute ofStandards and Technology. http://webbook.nist.gov/chemistry(2003).(22) Gaithersburg, M. D. NIST Computational ChemistryComparison and Benchmark Database; National Institute ofStandards and Technology. http://webbook.nist.gov/chemistry(2003).

    23. [23]

      (23) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F. N.; Law, C. K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed2007).(23) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F. N.; Law, C. K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed2007).

    24. [24]

      (24) Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D.M.; Robertson, S. H. VariFlex, Version 1.0; Argonne NationalLaboratory: Argonne, IL, 1999.(24) Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D.M.; Robertson, S. H. VariFlex, Version 1.0; Argonne NationalLaboratory: Argonne, IL, 1999.

    25. [25]

      (25) Beyer, T.; Swinehart, D. F. Comm. Assoc. Comput. Mach.1973, 16, 379.(25) Beyer, T.; Swinehart, D. F. Comm. Assoc. Comput. Mach.1973, 16, 379.

    26. [26]

      (26) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H., Unimolecular Reactions, 2nd ed.; JohnWiley & Sons:Chichester, UK, 1996.(26) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H., Unimolecular Reactions, 2nd ed.; JohnWiley & Sons:Chichester, UK, 1996.

    27. [27]

      (27) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2003, 107, 2680. doi: 10.1021/jp0221082(27) Miller, J. A.; Klippenstein, S. J. J. Phys. Chem. A 2003, 107, 2680. doi: 10.1021/jp0221082

    28. [28]

      (28) Saito, K.; Kakumoto, T.; Murakami, I. J. Phys. Chem. 1984, 88, 1182. doi: 10.1021/j150650a033(28) Saito, K.; Kakumoto, T.; Murakami, I. J. Phys. Chem. 1984, 88, 1182. doi: 10.1021/j150650a033

    29. [29]

      (29) Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Fundamentals of Momentum, Heat and Mass Transfer, 4th ed.; JohnWiley & Sons Ltd.: New York, 2001.(29) Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Fundamentals of Momentum, Heat and Mass Transfer, 4th ed.; JohnWiley & Sons Ltd.: New York, 2001.

    30. [30]

      (30) Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.2013.45.issue-10(30) Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.2013.45.issue-10

    31. [31]

      (31) UCSD, The San Diego Mechanism, Version 20141004, 2014.http://maeweb.ucsd.edu/combustion/.(31) UCSD, The San Diego Mechanism, Version 20141004, 2014.http://maeweb.ucsd.edu/combustion/.

    32. [32]

      (32) Robinson, J. C.; Harris, S. A.; Sun, W.; Sveum, N. E.; Neumark, D. M. J. Am. Chem. Soc. 2002, 124, 10211. doi: 10.1021/ja0127281(32) Robinson, J. C.; Harris, S. A.; Sun, W.; Sveum, N. E.; Neumark, D. M. J. Am. Chem. Soc. 2002, 124, 10211. doi: 10.1021/ja0127281

    33. [33]

      (33) Dean, A. M. J. Phys. Chem. 1985, 89, 4600. doi: 10.1021/j100267a038(33) Dean, A. M. J. Phys. Chem. 1985, 89, 4600. doi: 10.1021/j100267a038

    34. [34]

      (34) Kossiakoff, A.; Rice, F. O. J. Am. Chem. Soc. 1943, 65, 590. doi: 10.1021/ja01244a028(34) Kossiakoff, A.; Rice, F. O. J. Am. Chem. Soc. 1943, 65, 590. doi: 10.1021/ja01244a028

    35. [35]

      (35) Fabuss, B. M.; Borsanyi, A. S.; Satterfield, C. N.; Lait, R. I.; Smith, J. O. Ind. Eng. Chem. Process Des. Dev. 1962, 1, 293. doi: 10.1021/i260004a011(35) Fabuss, B. M.; Borsanyi, A. S.; Satterfield, C. N.; Lait, R. I.; Smith, J. O. Ind. Eng. Chem. Process Des. Dev. 1962, 1, 293. doi: 10.1021/i260004a011

    36. [36]

      (36) Wu, C. H.; Kern, R. D. J. Phys. Chem. 1987, 91, 6291. doi: 10.1021/j100308a042(36) Wu, C. H.; Kern, R. D. J. Phys. Chem. 1987, 91, 6291. doi: 10.1021/j100308a042

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  752
  • HTML全文浏览量:  74
文章相关
  • 收稿日期:  2015-08-24
  • 网络出版日期:  2015-12-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章