Citation: CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2256-2262. doi: 10.3866/PKU.WHXB201409302
SnO2/石墨纳米片复合电极及其在超级电容器中的应用
在电场的作用下对石墨棒进行电化学剥离, 使其表面形成相互平行排列, 且垂直于石墨棒基底的二维(2D)石墨纳米片阵列(GNSA). 然后通过阴极还原电沉积法制备SnO2/石墨纳米片阵列(SnO2/GNSA)复合电极.采用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.电化学测试表明该复合电极具有优异的超电容性能, 在0.5 mol·L-1 LiNO3电解质中, 扫描速率为5 mV·s-1, 电位窗口为1.4 V时, 比电容达4015 F·m-2. 由SnO2/GNSA复合电极和相同电解质组装成的对称型超级电容器, 在扫描速率为5 mV·s-1时, 其电位窗口可增至1.8 V, 能量密度达到0.41 Wh·m-2, 循环5000 圈后其比电容仍保持为初始比电容的81%.
English
SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors
Electrochemical exfoliation of graphite rods under the action of an electric field force led to the formation of two-dimensional (2D) graphite nanosheet arrays (GNSAs) perpendicular to the surface of the graphite substrate and parallel to each other in arrangement. Subsequently, SnO2/graphite nanosheet array (SnO2/GNSA) composite electrodes were prepared by the cathodic reduction electrodeposition method. The morphology, composition, and microstructure of the samples were characterized using field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy, respectively. Electrochemical measurements showed that the composite electrodes achieved specific capacitance values as high as 4105 F·m-2 in the potential window up to 1.4 V with a scan rate of 5 mV·s-1 in 0.5 mol·L-1 LiNO3 solution. Asymmetric supercapacitor fabricated with the as-prepared SnO2/GNSAs exhibited excellent capacitive performance with energy density of 0.41 Wh·m-2 in the potential window up to 1.8 V and retention of 81% after 5000 cycles.
-
Key words:
-
Supercapacitor
- / Graphite nanosheet array
- / SnO2
- / Composite electrode
- / Electrochemical performance
-
-
[1]
(1) Jayalakshmi, M.; Balasubramanian, K. Int. J. Electrochem. Sci. 2008, 3, 1196.
(1) Jayalakshmi, M.; Balasubramanian, K. Int. J. Electrochem. Sci. 2008, 3, 1196.
-
[2]
(2) Lang, X. Y.; Yuan, H. T.; Iwasa, Y.; Chen, M.W. Scripta Mater. 2011, 64, 923. doi: 10.1016/j.scriptamat.2011.01.038(2) Lang, X. Y.; Yuan, H. T.; Iwasa, Y.; Chen, M.W. Scripta Mater. 2011, 64, 923. doi: 10.1016/j.scriptamat.2011.01.038
-
[3]
(3) Jayalakshmi, M.; Venu pal, N.; Raja, K. P.; Rao, M. M. J. Power Sources 2006, 158, 1538. doi: 10.1016/j.jpowsour.2005.10.091(3) Jayalakshmi, M.; Venu pal, N.; Raja, K. P.; Rao, M. M. J. Power Sources 2006, 158, 1538. doi: 10.1016/j.jpowsour.2005.10.091
-
[4]
(4) Barbieri, O.; Hahn, M.; Herzog, A.; Kotz, R. Carbon 2005, 43, 1303. doi: 10.1016/j.carbon.2005.01.001(4) Barbieri, O.; Hahn, M.; Herzog, A.; Kotz, R. Carbon 2005, 43, 1303. doi: 10.1016/j.carbon.2005.01.001
-
[5]
(5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. doi: 10.1016/j.jpowsour.2006.02.065(5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. doi: 10.1016/j.jpowsour.2006.02.065
-
[6]
(6) Liu, X. M.; Zhang, X. G. Electrochim. Acta 2004, 49, 229. doi: 10.1016/j.electacta.2003.08.005(6) Liu, X. M.; Zhang, X. G. Electrochim. Acta 2004, 49, 229. doi: 10.1016/j.electacta.2003.08.005
-
[7]
(7) Wu, M. Q.; Zhang, L. P.;Wang, D. M.; Chao, X.; Zhang, S. R. J. Power Sources 2008, 175, 669. doi: 10.1016/j.jpowsour.2007.09.062(7) Wu, M. Q.; Zhang, L. P.;Wang, D. M.; Chao, X.; Zhang, S. R. J. Power Sources 2008, 175, 669. doi: 10.1016/j.jpowsour.2007.09.062
-
[8]
(8) Li, L.; Hu, Z. A.; Yang, Y. Y.;Wu, H. Y.; Cui, L. J. Acta Phys. -Chim. Sin. 2014, 30, 899. [李丽, 胡中爱, 杨玉英, 吴红英, 崔璐娟. 物理化学学报, 2014, 30, 899.] doi: 10.3866/PKU.WHXB201403261(8) Li, L.; Hu, Z. A.; Yang, Y. Y.;Wu, H. Y.; Cui, L. J. Acta Phys. -Chim. Sin. 2014, 30, 899. [李丽, 胡中爱, 杨玉英, 吴红英, 崔璐娟. 物理化学学报, 2014, 30, 899.] doi: 10.3866/PKU.WHXB201403261
-
[9]
(9) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223(9) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223
-
[10]
(10) Zhou, C.; Zhang, Y.W.; Li, Y. Y.; Liu, J. P. Nano Letters 2013, 13, 2078. doi: 10.1021/nl400378j(10) Zhou, C.; Zhang, Y.W.; Li, Y. Y.; Liu, J. P. Nano Letters 2013, 13, 2078. doi: 10.1021/nl400378j
-
[11]
(11) Wang, H.W.; Xu, Z. J.; Yi, H.;Wei, H. G.; Guo, Z. H.;Wang, X. F. Nano Energy 2014, 7, 86. doi: 10.1016/j.nanoen.2014.04.009(11) Wang, H.W.; Xu, Z. J.; Yi, H.;Wei, H. G.; Guo, Z. H.;Wang, X. F. Nano Energy 2014, 7, 86. doi: 10.1016/j.nanoen.2014.04.009
-
[12]
(12) Jiang, Y. Z.; Yuan, T. Z.; Sun,W. P.; Yan, M. ACS Appl. Mater. Interfaces 2012, 4, 6126.(12) Jiang, Y. Z.; Yuan, T. Z.; Sun,W. P.; Yan, M. ACS Appl. Mater. Interfaces 2012, 4, 6126.
-
[13]
(13) Jin, Y. H.; Min, K. M.; Seo, S. D.; Shim, H.W.; Kim, D.W. J. Phys. Chem. C 2011, 115, 22062. doi: 10.1021/jp208021w(13) Jin, Y. H.; Min, K. M.; Seo, S. D.; Shim, H.W.; Kim, D.W. J. Phys. Chem. C 2011, 115, 22062. doi: 10.1021/jp208021w
-
[14]
(14) Wang, H. K.; Rogach, A. L. Chem. Mater. 2014, 26, 123. doi: 10.1021/cm4018248(14) Wang, H. K.; Rogach, A. L. Chem. Mater. 2014, 26, 123. doi: 10.1021/cm4018248
-
[15]
(15) Wu, P.; Du, N.; Zhang, H.; Zhai, C. X.; Yang, D. R. ACS Appl. Mater. Interfaces 2011, 3, 1946. doi: 10.1021/am200168w(15) Wu, P.; Du, N.; Zhang, H.; Zhai, C. X.; Yang, D. R. ACS Appl. Mater. Interfaces 2011, 3, 1946. doi: 10.1021/am200168w
-
[16]
(16) Wang, J. H.; Li, B.;Wu, H. Y.; Guo, Y. Z. Acta Phys. -Chim. Sin. 2008, 24, 681. [王剑华, 李斌, 吴海燕, 郭玉忠. 物理化学学报, 2008, 24, 681.] doi: 10.3866/PKU.WHXB20080423(16) Wang, J. H.; Li, B.;Wu, H. Y.; Guo, Y. Z. Acta Phys. -Chim. Sin. 2008, 24, 681. [王剑华, 李斌, 吴海燕, 郭玉忠. 物理化学学报, 2008, 24, 681.] doi: 10.3866/PKU.WHXB20080423
-
[17]
(17) Deosarkar, P.; Pawar, S. M.; Sonawane, S. H.; Bhanvase, B. A. Chem. Eng. Process 2013, 70, 48. doi: 10.1016/j. cep.2013.05.008(17) Deosarkar, P.; Pawar, S. M.; Sonawane, S. H.; Bhanvase, B. A. Chem. Eng. Process 2013, 70, 48. doi: 10.1016/j. cep.2013.05.008
-
[18]
(18) Lim, A. H.; Shim, H.W.; Seo, S. D.; Lee, G. H.; Park, K. S.; Kim, D.W. Nanoscale 2012, 4, 4694. doi: 10.1039/c2nr31056b(18) Lim, A. H.; Shim, H.W.; Seo, S. D.; Lee, G. H.; Park, K. S.; Kim, D.W. Nanoscale 2012, 4, 4694. doi: 10.1039/c2nr31056b
-
[19]
(19) Li, Z. J.; Chang, T. X.; Yun, G. Q.; Jia, Y. Powder Technol. 2012, 224, 306. doi: 10.1016/j.powtec.2012.03.012(19) Li, Z. J.; Chang, T. X.; Yun, G. Q.; Jia, Y. Powder Technol. 2012, 224, 306. doi: 10.1016/j.powtec.2012.03.012
-
[20]
(20) Pang, X.; Ma, Z. Q.; Zuo, L. Acta Phys. -Chim. Sin. 2009, 25, 2433. [庞旭, 马正青, 左列. 物理化学学报, 2009, 25, 2433.] doi: 10.3866/PKU.WHXB20091211(20) Pang, X.; Ma, Z. Q.; Zuo, L. Acta Phys. -Chim. Sin. 2009, 25, 2433. [庞旭, 马正青, 左列. 物理化学学报, 2009, 25, 2433.] doi: 10.3866/PKU.WHXB20091211
-
[21]
(21) Lim, S. P.; Huang, N. M.; Lim, H. N. Ceram. Int. 2013, 39, 6647. doi: 10.1016/j.ceramint.2013.01.102(21) Lim, S. P.; Huang, N. M.; Lim, H. N. Ceram. Int. 2013, 39, 6647. doi: 10.1016/j.ceramint.2013.01.102
-
[22]
(22) Liu, B. N.; Luo, F.;Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.(22) Liu, B. N.; Luo, F.;Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.
-
[23]
(23) Lee, S. H.; Seo, S. D.; Jin, Y. H. Shim, H.W.; Kim, D.W. Electrochem. Commun. 2010, 12, 1419. doi: 10.1016/j. elecom.2010.07.036(23) Lee, S. H.; Seo, S. D.; Jin, Y. H. Shim, H.W.; Kim, D.W. Electrochem. Commun. 2010, 12, 1419. doi: 10.1016/j. elecom.2010.07.036
-
[24]
(24) Chen, J.; Li, C.; Shi, G. Q. J. Phys. Chem. Lett. 2013, 4, 1244. doi: 10.1021/jz400160k(24) Chen, J.; Li, C.; Shi, G. Q. J. Phys. Chem. Lett. 2013, 4, 1244. doi: 10.1021/jz400160k
-
[25]
(25) Yu, Z. J.;Wang, Y. L.; Deng, H. G.; Zhan, L.; Yang, G. Z.; Yang, J. H.; Ling, L. C. J. Inorg. Mater. 2013, 28, 515. [虞祯君, 王艳莉, 邓洪贵, 詹亮, 杨光智, 杨俊和, 凌立成. 无机材料学报, 2013, 28, 515.] doi: 10.3724/SP.J.1077.2013.12374(25) Yu, Z. J.;Wang, Y. L.; Deng, H. G.; Zhan, L.; Yang, G. Z.; Yang, J. H.; Ling, L. C. J. Inorg. Mater. 2013, 28, 515. [虞祯君, 王艳莉, 邓洪贵, 詹亮, 杨光智, 杨俊和, 凌立成. 无机材料学报, 2013, 28, 515.] doi: 10.3724/SP.J.1077.2013.12374
-
[26]
(26) Wang, D. N.; Li, X. F.;Wang, J. X.; Yang, J. L.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. J. Phys. Chem. C 2012, 116, 22149. doi: 10.1021/jp306041y(26) Wang, D. N.; Li, X. F.;Wang, J. X.; Yang, J. L.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. J. Phys. Chem. C 2012, 116, 22149. doi: 10.1021/jp306041y
-
[27]
(27) Raki, R. B.; Cha, D. K.; Chen,W.; Alshareef, H. N. J. Phys. Chem. C 2011, 115, 14392. doi: 10.1021/jp202519e(27) Raki, R. B.; Cha, D. K.; Chen,W.; Alshareef, H. N. J. Phys. Chem. C 2011, 115, 14392. doi: 10.1021/jp202519e
-
[28]
(28) Kandalkar, S. G.; Gunjakar, J. K.; Lokhande, C. D. Appl. Surf. Sci. 2008, 254, 5540.(28) Kandalkar, S. G.; Gunjakar, J. K.; Lokhande, C. D. Appl. Surf. Sci. 2008, 254, 5540.
-
[29]
(29) Pusawall, S. N.; Deshmukh, P. R.; Lokhande, C. D. Bull. Mater. Sci. 2011, 34, 1179. doi: 10.1007/s12034-011-0168-3(29) Pusawall, S. N.; Deshmukh, P. R.; Lokhande, C. D. Bull. Mater. Sci. 2011, 34, 1179. doi: 10.1007/s12034-011-0168-3
-
[30]
(30) Tang, P. Y.; Zhao, Y. Q.;Wang, Y. M.; Xu, C. L. Nanoscale 2013, 5, 8156. doi: 10.1039/c3nr02119j(30) Tang, P. Y.; Zhao, Y. Q.;Wang, Y. M.; Xu, C. L. Nanoscale 2013, 5, 8156. doi: 10.1039/c3nr02119j
-
[31]
(31) Pang, S. C.; Anderdson, M. A.; Chapman, T.W. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216(31) Pang, S. C.; Anderdson, M. A.; Chapman, T.W. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216
-
[32]
(32) Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Adv. Mater. 2012, 24, 4569. doi: 10.1002/adma.v24.33
(32) Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Adv. Mater. 2012, 24, 4569. doi: 10.1002/adma.v24.33
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 661
- 文章访问数: 1148
- HTML全文浏览量: 54

下载: