聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用

姚蔓莉 董艳艳 谢菁 贾爱平 谢冠群 胡庚申 罗孟飞

引用本文: 姚蔓莉, 董艳艳, 谢菁, 贾爱平, 谢冠群, 胡庚申, 罗孟飞. 聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用[J]. 物理化学学报, 2014, 30(4): 789-796. doi: 10.3866/PKU.WHXB201402123 shu
Citation:  YAO Man-Li, DONG Yan-Yan, XIE Jing, JIA Ai-Ping, XIE Guan-Qun, HU Geng-Shen, LUO Meng-Fei. Preparation of Polyethylenimine-Functionalized Silica Nanotubes and Their Application for CO2 Adsorption[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 789-796. doi: 10.3866/PKU.WHXB201402123 shu

聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用

  • 基金项目:

    国家自然科学基金(21203167)资助项目 

摘要:

以P123为模板,1,2-二(三甲氧基硅基)乙烷(BTME)为硅源合成了介孔氧化硅纳米管(E-SNTs). 将ESNTs经过聚乙烯亚胺(PEI)修饰后制得吸附剂用于捕捉CO2. 对吸附剂进行了透射电镜(TEM)、物理吸附、傅里叶变换红外(FTIR)光谱、热重分析(TGA)等表征. E-SNTs-PEI 吸附剂的最佳CO2吸附温度为75 ℃. 吸附剂的CO2吸附量随着PEI负载量的增加呈现先增大后减小的趋势,其中50%为最佳负载量,此时吸附剂的吸附量最大为3.32 mmol·g-1. 相比较SBA-15 基吸附剂,E-SNTs 基吸附剂具有更优异的吸附性能. 在有水汽的存在下,吸附剂E-SNTs-50 的CO2吸附量达到3.75 mmol·g-1. 经过四次循环吸脱附实验测试E-SNTs-PEI 吸附剂的稳定性能,结果表明其CO2吸附量基本不变,该吸附剂表现出较好的稳定性和可再生能力.

English

    1. [1]

      (1) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438. doi: 10.1021/ie200686q

      (1) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Ind. Eng. Chem. Res. 2012, 51, 1438. doi: 10.1021/ie200686q

    2. [2]

      (2) Liu, L.; Deng, Q. F.; Hou, X. X.; Yuan, Z. Y. J. Mater. Chem. 2012, 22, 15540.(2) Liu, L.; Deng, Q. F.; Hou, X. X.; Yuan, Z. Y. J. Mater. Chem. 2012, 22, 15540.

    3. [3]

      (3) Kamarudin, K. S. N.; Alias, N. Fuel Process. Technol. 2013, 106, 332. doi: 10.1016/j.fuproc.2012.08.017(3) Kamarudin, K. S. N.; Alias, N. Fuel Process. Technol. 2013, 106, 332. doi: 10.1016/j.fuproc.2012.08.017

    4. [4]

      (4) Gupta, M.; da Silva, E. F.; Hartono, A.; Svendsen, H. F. J. Phys. Chem. B 2013, 117, 9457. doi: 10.1021/jp404356e(4) Gupta, M.; da Silva, E. F.; Hartono, A.; Svendsen, H. F. J. Phys. Chem. B 2013, 117, 9457. doi: 10.1021/jp404356e

    5. [5]

      (5) Zoannou, K. S.; Sapsford, D. J.; Griffiths, A. J. International Journal of Greenhouse Gas Control 2013, 17, 423. doi: 10.1016/j.ijggc.2013.05.026(5) Zoannou, K. S.; Sapsford, D. J.; Griffiths, A. J. International Journal of Greenhouse Gas Control 2013, 17, 423. doi: 10.1016/j.ijggc.2013.05.026

    6. [6]

      (6) Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Energy 2013, 55, 676. doi: 10.1016/j.energy.2013.04.021(6) Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Energy 2013, 55, 676. doi: 10.1016/j.energy.2013.04.021

    7. [7]

      (7) Sema, T.; Naami, A.; Fu, K. Y.; Chen, G. Y.; Liang, Z. W.; Idem, R.; Tontiwachwuthikul, P. Chem. Eng. Sci. 2013, 100, 183. doi: 10.1016/j.ces.2012.12.030(7) Sema, T.; Naami, A.; Fu, K. Y.; Chen, G. Y.; Liang, Z. W.; Idem, R.; Tontiwachwuthikul, P. Chem. Eng. Sci. 2013, 100, 183. doi: 10.1016/j.ces.2012.12.030

    8. [8]

      (8) Wang, X. X.; Schwartz, V.; Clark, J. C.; Ma, X. L.; Overbury, S. H.; Xu, X. C.; Song, C. S. J. Phys. Chem. C 2009, 113, 7260. doi: 10.1021/jp809946y(8) Wang, X. X.; Schwartz, V.; Clark, J. C.; Ma, X. L.; Overbury, S. H.; Xu, X. C.; Song, C. S. J. Phys. Chem. C 2009, 113, 7260. doi: 10.1021/jp809946y

    9. [9]

      (9) Veawab, A.; Tontiwachwuthikul;, P.; Chakma., A. Ind. Eng. Chem. Res. 1999, 38, 3917. doi: 10.1021/ie9901630(9) Veawab, A.; Tontiwachwuthikul;, P.; Chakma., A. Ind. Eng. Chem. Res. 1999, 38, 3917. doi: 10.1021/ie9901630

    10. [10]

      (10) Xu, X.; Song, C.; Wincek, R.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Fuel Chemistry Division Preprints 2003, 48, 162.(10) Xu, X.; Song, C.; Wincek, R.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Fuel Chemistry Division Preprints 2003, 48, 162.

    11. [11]

      (11) Wang, X. X.; Ma, X. L.; Song, C. S.; Locke, D. R.; Siefert, S.; Winans, R. E.; Mollmer, J.; Lange, M.; Moller, A.; Glaser, R. Microporous Mesoporous Mater. 2013, 169, 103. doi: 10.1016/j.micromeso.2012.09.023(11) Wang, X. X.; Ma, X. L.; Song, C. S.; Locke, D. R.; Siefert, S.; Winans, R. E.; Mollmer, J.; Lange, M.; Moller, A.; Glaser, R. Microporous Mesoporous Mater. 2013, 169, 103. doi: 10.1016/j.micromeso.2012.09.023

    12. [12]

      (12) Choi, D. H.; Ryoo, R. J. Mater. Chem. 2010, 20, 5544. doi: 10.1039/c0jm00671h(12) Choi, D. H.; Ryoo, R. J. Mater. Chem. 2010, 20, 5544. doi: 10.1039/c0jm00671h

    13. [13]

      (13) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. doi: 10.1021/ie900837t(13) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. doi: 10.1021/ie900837t

    14. [14]

      (14) Jo, C.; Kim, K.; Ryoo, R. Microporous Mesoporous Mater. 2009, 124, 45. doi: 10.1016/j.micromeso.2009.04.037(14) Jo, C.; Kim, K.; Ryoo, R. Microporous Mesoporous Mater. 2009, 124, 45. doi: 10.1016/j.micromeso.2009.04.037

    15. [15]

      (15) Liu, L.; Deng, Q. F.; Ma, T. Y.; Lin, X. Z.; Hou, X. X.; Liu, Y. P.; Yuan, Z. Y. J. Mater. Chem. 2011, 21, 16001. doi: 10.1039/c1jm12887f(15) Liu, L.; Deng, Q. F.; Ma, T. Y.; Lin, X. Z.; Hou, X. X.; Liu, Y. P.; Yuan, Z. Y. J. Mater. Chem. 2011, 21, 16001. doi: 10.1039/c1jm12887f

    16. [16]

      (16) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Energy Fuels 2002, 16, 1463. doi: 10.1021/ef020058u(16) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Energy Fuels 2002, 16, 1463. doi: 10.1021/ef020058u

    17. [17]

      (17) Ma, X. L.; Wang, X. X.; Song, C. S. J. Am. Chem. Soc. 2009, 131, 5777. doi: 10.1021/ja8074105(17) Ma, X. L.; Wang, X. X.; Song, C. S. J. Am. Chem. Soc. 2009, 131, 5777. doi: 10.1021/ja8074105

    18. [18]

      (18) Liu, X.; Li, X. B.; Guan, Z. H.; Liu, J.; Zhao, J.; Yang, Y.; Yang, Q. H. Chem. Commun. 2011, 47, 8073. doi: 10.1039/c1cc12136g(18) Liu, X.; Li, X. B.; Guan, Z. H.; Liu, J.; Zhao, J.; Yang, Y.; Yang, Q. H. Chem. Commun. 2011, 47, 8073. doi: 10.1039/c1cc12136g

    19. [19]

      (19) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279,  doi: 10.3878/j.issn.1006-9895.2013.13159(19) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279,  doi: 10.3878/j.issn.1006-9895.2013.13159

    20. [20]

      (20) Feng, X. X.; Hu, G. S.; Hu, X.; Xie, G. Q.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. Ind. Eng. Chem. Res. 2013, 52, 4221. 10.1021/ie301946p(20) Feng, X. X.; Hu, G. S.; Hu, X.; Xie, G. Q.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. Ind. Eng. Chem. Res. 2013, 52, 4221. 10.1021/ie301946p

    21. [21]

      (21) Feng, X.X; Xie, J.; Hu, G. S.; Jia, A. P.; Xie, G. Q.; Luo, M.F. Acta Phys. -Chim. Sin. 2013, 29, 1266. [冯星星, 谢菁, 胡庚申, 贾爱平, 谢冠群, 罗孟飞. 物理化学学报. 2013, 29, 1266.] doi: 10.3866/PKU.WHXB201304091(21) Feng, X.X; Xie, J.; Hu, G. S.; Jia, A. P.; Xie, G. Q.; Luo, M.F. Acta Phys. -Chim. Sin. 2013, 29, 1266. [冯星星, 谢菁, 胡庚申, 贾爱平, 谢冠群, 罗孟飞. 物理化学学报. 2013, 29, 1266.] doi: 10.3866/PKU.WHXB201304091

    22. [22]

      (22) Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W. Microporous Mesoporous Mater. 2003, 62, 29. 10.1016/S1387-1811(03)00388-3(22) Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W. Microporous Mesoporous Mater. 2003, 62, 29. 10.1016/S1387-1811(03)00388-3

    23. [23]

      (23) Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mater. 2008, 113, 31. doi: 10.1016/j.micromeso.2007.10.049(23) Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mater. 2008, 113, 31. doi: 10.1016/j.micromeso.2007.10.049

    24. [24]

      (24) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250. doi: 10.1021/ef0002391

      (24) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250. doi: 10.1021/ef0002391

  • 加载中
计量
  • PDF下载量:  572
  • 文章访问数:  945
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2014-03-31
  • 收稿日期:  2013-12-30
  • 网络出版日期:  2014-02-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章