Citation: WANG You-Juan, ZHAO Dong-Bo, RONG Chun-Ying, LIU Shu-Bin. Towards Understanding the Origin and Nature of the Conformational Stability of Water Clusters:a Density Functional Theory and Quantum Molecular Dynamics Study[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2173-2179. doi: 10.3866/PKU.WHXB201308272
水团簇构象稳定性起源和本质的密度泛函理论与量子分子动力学研究
寻找确定分子体系构象稳定性的关键因素是至关重要的, 但即使对最简单的分子, 其稳定性的起源和本质仍存在很大的争议. 本文以水团簇为例, 采用量子分子动力学产生185个八聚水分子团簇模型, 并运用基于密度泛函理论的两个能量分解方法寻找其稳定性的决定因素. 我们发现不同水团簇的稳定性与其立体排斥能和交换相关能成良好的线性关系.本文还采用双变量模型模拟水团簇的稳定性, 取得了更好的结果(相关系数大于0.99). 本工作对揭示包括水分子团簇在内的通过弱相互作用组成的分子络合物的稳定性起源和本质提供了有益启示.
English
Towards Understanding the Origin and Nature of the Conformational Stability of Water Clusters:a Density Functional Theory and Quantum Molecular Dynamics Study
To find out what interaction dictates the molecular stability is essential, yet still controversial even for simplest molecules. Here, using water cluster as an example, we employ quantum molecular dynamics to generate a total of 185 conformations for octamer water clusters and then employ two energy partition schemes from density functional theory to pinpoint the principles verning their stability. We found that their stability is strongly correlated with steric repulsion and exchange-correlation interactions. Explanations using two different quantities are also proposed (with the correlation coefficient larger than 0.99). This work sheds light to the fundamental understanding towards the origin and nature of molecular conformational stability for water clusters and other molecular complexes formed through intermolecular interactions.
-
-
[1]
(1) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
(1) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
-
[2]
(2) Pophristic, V.; odman, L. Nature 2001, 411, 565. doi: 10.1038/35079036(2) Pophristic, V.; odman, L. Nature 2001, 411, 565. doi: 10.1038/35079036
-
[3]
(3) Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Edit.2003, 42, 4183.(3) Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Edit.2003, 42, 4183.
-
[4]
(4) Weinhold, F. Angew. Chem. Int. Edit. 2003, 42, 4188.(4) Weinhold, F. Angew. Chem. Int. Edit. 2003, 42, 4188.
-
[5]
(5) Mo, Y. R. Nat. Chem. 2010, 2, 666. doi: 10.1038/nchem.721(5) Mo, Y. R. Nat. Chem. 2010, 2, 666. doi: 10.1038/nchem.721
-
[6]
(6) Mo, Y.; Gao, J. Accounts Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w(6) Mo, Y.; Gao, J. Accounts Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w
-
[7]
(7) Parr, R. G.; Yang, W. Density Functional Theory of Atoms Molecules; Oxford University Press: NewYork, 1989.(7) Parr, R. G.; Yang, W. Density Functional Theory of Atoms Molecules; Oxford University Press: NewYork, 1989.
-
[8]
(8) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p(8) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p
-
[9]
(9) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332(9) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[10]
(10) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010(10) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010
-
[11]
(11) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211(11) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211
-
[12]
(12) Liu, S. B.; Nagy, A.; Parr, R. G. Phys. Rev. A 1999, 59, 1131.doi: 10.1103/PhysRevA.59.1131(12) Liu, S. B.; Nagy, A.; Parr, R. G. Phys. Rev. A 1999, 59, 1131.doi: 10.1103/PhysRevA.59.1131
-
[13]
(13) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109. doi: 10.1063/1.2378769(13) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109. doi: 10.1063/1.2378769
-
[14]
(14) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247(14) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
-
[15]
(15) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4(15) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4
-
[16]
(16) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521(16) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521
-
[17]
(17) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700(17) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
-
[18]
(18) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605(18) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605
-
[19]
(19) Liu, S. B. Phys. Rev. A 1996, 54, 4863. doi: 10.1103/PhysRevA.54.4863(19) Liu, S. B. Phys. Rev. A 1996, 54, 4863. doi: 10.1103/PhysRevA.54.4863
-
[20]
(20) Liu, S. B.; Parr, R. G. Phys. Rev. A 1997, 55, 1792. doi: 10.1103/PhysRevA.55.1792(20) Liu, S. B.; Parr, R. G. Phys. Rev. A 1997, 55, 1792. doi: 10.1103/PhysRevA.55.1792
-
[21]
(21) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377(21) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377
-
[22]
(22) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244(22) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
-
[23]
(23) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín,J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272(23) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín,J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272
-
[24]
(24) Liu, S. B.; vind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a(24) Liu, S. B.; vind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a
-
[25]
(25) Liu, S. B.; vind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767(25) Liu, S. B.; vind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767
-
[26]
(26) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f(26) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f
-
[27]
(27) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g(27) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g
-
[28]
(28) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760(28) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
-
[29]
(29) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.;Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英,苏曼,苏文,尹笃林, 刘述斌.物理化学学报, 2013, 29,43.] doi: 10.3866/PKU.WHXB201211121(29) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.;Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英,苏曼,苏文,尹笃林, 刘述斌.物理化学学报, 2013, 29,43.] doi: 10.3866/PKU.WHXB201211121
-
[30]
(30) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015(30) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015
-
[31]
(31) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583(31) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583
-
[32]
(32) Liu, S. B. J. Chem. Sci. 2005, 117, 477; Zhong, A. G.; Rong, C.Y.; Liu, S. B. J. Phys. Chem. A 2007, 111, 3132. doi: 10.1007/BF02708352(32) Liu, S. B. J. Chem. Sci. 2005, 117, 477; Zhong, A. G.; Rong, C.Y.; Liu, S. B. J. Phys. Chem. A 2007, 111, 3132. doi: 10.1007/BF02708352
-
[33]
(33) Valiev, M.; Bylaska, E. J.; vind, N.; Kowalski, K.; Straatsma,T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; de Jong, W. Comput. Phys. Commun. 2010, 181,1477.(33) Valiev, M.; Bylaska, E. J.; vind, N.; Kowalski, K.; Straatsma,T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; de Jong, W. Comput. Phys. Commun. 2010, 181,1477.
-
[34]
(34) Maeda, S.; Ohno, K. J. Phys. Chem. A 2007, 111, 4527. doi: 10.1021/jp070606a(34) Maeda, S.; Ohno, K. J. Phys. Chem. A 2007, 111, 4527. doi: 10.1021/jp070606a
-
[35]
(35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x(35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[36]
(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 09,Revision C. 01; Gaussian, Inc.: Wallingford, CT, 2009.(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 09,Revision C. 01; Gaussian, Inc.: Wallingford, CT, 2009.
-
[37]
(37) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10,325.
(37) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10,325.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 702
- 文章访问数: 1692
- HTML全文浏览量: 115

下载: