Citation: WANG Xue-Bao, LI Jin-Qing, LUO Yun-Jun. Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2079-2086. doi: 10.3866/PKU.WHXB201305021
干燥方式对高氯酸铵/石墨烯复合材料的结构和热分解行为的影响
通过溶胶-凝胶法制备了石墨烯水凝胶, 并将其与高氯酸铵(AP)复合, 然后分别采用自然干燥、冷冻干燥和超临界CO2干燥三种干燥方式制备了AP/石墨烯复合材料, 并通过扫描电镜(SEM)、元素分析、X射线衍射(XRD)、差示扫描量热仪(DSC)和热重-红外联用技术(TG-FTIR)研究了不同干燥方式对其结构和热分解行为的影响. 结果表明, 干燥方式对AP/石墨烯复合材料的形貌具有明显影响, 其中通过超临界CO2干燥制备的AP/石墨烯复合材料基本能保持与石墨烯气凝胶相似的外观和多孔结构. 通过自然干燥、冷冻干燥和超临界CO2干燥制备的AP/石墨烯复合材料中AP的质量分数分别为89.97%、92.41%和94.40%, 其中通过超临界CO2干燥制备的复合材料中AP的粒径尺寸为69 nm. DSC测试结果表明, 石墨烯对AP的热分解过程具有明显的促进作用, 能使AP的低温分解过程大大减弱, 高温分解峰温明显降低. 三种干燥方式相比, 通过超临界CO2干燥制备的AP/石墨烯复合材料中石墨烯的促进作用最明显. 与纯AP相比, 其高温分解峰温降低了83.7℃, 表观分解热提高到2110 J·g-1. TG-FTIR分析结果表明, AP/石墨烯复合材料的热分解过程中, AP分解产生的氧化性产物与石墨烯发生了氧化反应, 生成了CO2.
English
Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites
Graphene hydrogels were prepared by the sol-gel method, and then used to prepare ammonium perchlorate (AP)/graphene composites by the incorporation of AP. The composites were dried naturally in air, freeze-dried, or dried with supercritical CO2. Scanning electron microscopy (SEM), elemental analyses (EA), and X-ray diffraction (XRD) were used to characterize the structure of the AP/graphene composites dried using different methods. Furthermore, the thermal decomposition behavior of the AP/graphene composites was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis/infrared spectroscopy (TG-FTIR). Drying method had an obvious influence on the morphology of the AP/graphene composites; only the AP/graphene composites dried with supercritical CO2 showed similar three-dimensional networks and porous structure to graphene aerogels. Elemental analyses revealed that the AP contents in the AP/graphene composites prepared by drying naturally, freeze-drying, and supercritical CO2 drying were 89.97%, 92.41%, and 94.40%, respectively. XRD results showed that AP was dispersed homogeneously on the nanoscale in the AP/graphene composites dried with supercritical CO2 and the average particle diameter of AP was about 69 nm. DSC and TG-FTIR analyses indicated that graphene could promote the thermal decomposition of AP, particularly for the sample dried with supercritical CO2. Independent of drying method, the low-temperature decomposition of the as-prepared AP/graphene composites was not observed and the high-temperature decomposition was accelerated. Compared to the other two drying methods, graphene in the AP/graphene composites dried with supercritical CO2 showed most obvious promoting effects. The high-temperature decomposition temperature of the AP/graphene composites dried with supercritical CO2 decreased by 83.7 ℃ compared with that of pure AP, and the total heat release reached 2110 J·g-1. Moreover, graphene also took part in the oxidation reactions with oxidizing products, which was confirmed by the generation of CO2.
-
Key words:
-
Drying methods
- / Graphene
- / Ammonium perchlorate
- / Sol-gel method
- / Thermal decomposition
-
-
[1]
(1) Zhou, L. M.; Liu, H. Y.; Li, F. S. Acta Phys. -Chim. Sin. 2006,22 (5), 627. [周龙梅, 刘宏英, 李凤生. 物理化学学报, 2006,22 (5), 627.] doi: 10.3866/PKU.WHXB20060521
(1) Zhou, L. M.; Liu, H. Y.; Li, F. S. Acta Phys. -Chim. Sin. 2006,22 (5), 627. [周龙梅, 刘宏英, 李凤生. 物理化学学报, 2006,22 (5), 627.] doi: 10.3866/PKU.WHXB20060521
-
[2]
(2) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.;Wu, H. Y. Mater. Lett. 2010, 64, 1698. doi: 10.1016/j.matlet.2010.04.061(2) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.;Wu, H. Y. Mater. Lett. 2010, 64, 1698. doi: 10.1016/j.matlet.2010.04.061
-
[3]
(3) Liu, L. L.; Li, F. S.; Tan, L. H.; Min, L.; Yi, Y. Propellants Explos. Pyrotech. 2004, 29, 34.(3) Liu, L. L.; Li, F. S.; Tan, L. H.; Min, L.; Yi, Y. Propellants Explos. Pyrotech. 2004, 29, 34.
-
[4]
(4) Kapoor, I. P. S.; Srivastava, P.; Singh, G. Propellants Explos. Pyrotech. 2009, 34, 351. doi: 10.1002/prep.v34:4(4) Kapoor, I. P. S.; Srivastava, P.; Singh, G. Propellants Explos. Pyrotech. 2009, 34, 351. doi: 10.1002/prep.v34:4
-
[5]
(5) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28 (2), 297. [罗小林,韩银凤, 杨德锁,陈亚芍. 物理化学学报, 2012, 28 (2), 297.] doi: 10.3866/PKU.WHXB201112012(5) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28 (2), 297. [罗小林,韩银凤, 杨德锁,陈亚芍. 物理化学学报, 2012, 28 (2), 297.] doi: 10.3866/PKU.WHXB201112012
-
[6]
(6) Chandru, R. A.; Patra, S.; Oommen, C.; Munichandraiah, N.;Raghunandan, B. N. J. Mater. Chem. 2012, 22, 6536. doi: 10.1039/c2jm16169a(6) Chandru, R. A.; Patra, S.; Oommen, C.; Munichandraiah, N.;Raghunandan, B. N. J. Mater. Chem. 2012, 22, 6536. doi: 10.1039/c2jm16169a
-
[7]
(7) Li, N.; Cao, M. H.;Wu, Q. Y.; Hu, C. W. CrystEngComm 2012,14, 428. doi: 10.1039/c1ce05858d(7) Li, N.; Cao, M. H.;Wu, Q. Y.; Hu, C. W. CrystEngComm 2012,14, 428. doi: 10.1039/c1ce05858d
-
[8]
(8) Chaturvedi, S.; Dave, P. N. J. Exp. Nanosci. 2012, 7 (2), 205.doi: 10.1080/17458080.2010.517571(8) Chaturvedi, S.; Dave, P. N. J. Exp. Nanosci. 2012, 7 (2), 205.doi: 10.1080/17458080.2010.517571
-
[9]
(9) Han, X.; Sun, Y. L.; Wang, T. F.; Lin, Z. K.; Li, S. F.; Zhao, F.Q.; Liu, Z. R.; Yi, J. H.; Ren, X. E. J. Therm. Anal. Calorim.2008, 91, 551. doi: 10.1007/s10973-007-8290-6(9) Han, X.; Sun, Y. L.; Wang, T. F.; Lin, Z. K.; Li, S. F.; Zhao, F.Q.; Liu, Z. R.; Yi, J. H.; Ren, X. E. J. Therm. Anal. Calorim.2008, 91, 551. doi: 10.1007/s10973-007-8290-6
-
[10]
(10) Reshmi, S.; Catherine, K. B.; Nair, C. P. R. Int. J. Nanotechnol.2011, 8 (10-12), 979.(10) Reshmi, S.; Catherine, K. B.; Nair, C. P. R. Int. J. Nanotechnol.2011, 8 (10-12), 979.
-
[11]
(11) Compton, O. C.; Nguyen, S. T. Small 2010, 6, 711. doi: 10.1002/smll.v6:6(11) Compton, O. C.; Nguyen, S. T. Small 2010, 6, 711. doi: 10.1002/smll.v6:6
-
[12]
(12) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849(12) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
-
[13]
(13) Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S.Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y(13) Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S.Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
-
[14]
(14) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol.2008, 3 (8), 491. doi: 10.1038/nnano.2008.199(14) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol.2008, 3 (8), 491. doi: 10.1038/nnano.2008.199
-
[15]
(15) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321,385. doi: 10.1126/science.1157996(15) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321,385. doi: 10.1126/science.1157996
-
[16]
(16) Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872(16) Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872
-
[17]
(17) Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W.C.; Liu, B. J. Mater. Chem. 2011, 21, 6494. doi: 10.1039/c1jm10239g(17) Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W.C.; Liu, B. J. Mater. Chem. 2011, 21, 6494. doi: 10.1039/c1jm10239g
-
[18]
(18) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4 (7), 4324. doi: 10.1021/nn101187z(18) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4 (7), 4324. doi: 10.1021/nn101187z
-
[19]
(19) Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi: 10.1039/c1nr10355e(19) Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi: 10.1039/c1nr10355e
-
[20]
(20) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017(20) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
-
[21]
(21) Boldyrev, V. V. Thermochim. Acta 2006, 443, 1. doi: 10.1016/j.tca.2005.11.038(21) Boldyrev, V. V. Thermochim. Acta 2006, 443, 1. doi: 10.1016/j.tca.2005.11.038
-
[22]
(22) Fan, X. Z.; Li, J. Z.; Fu, X. L.; Wang, H. Acta Chim. Sin. 2009,67 (1), 39. [樊学忠,李吉祯, 付小龙, 王晗. 化学学报,2009, 67 (1), 39.](22) Fan, X. Z.; Li, J. Z.; Fu, X. L.; Wang, H. Acta Chim. Sin. 2009,67 (1), 39. [樊学忠,李吉祯, 付小龙, 王晗. 化学学报,2009, 67 (1), 39.]
-
[23]
(23) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.;Tian, Y.; Hu, C. W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009(23) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.;Tian, Y.; Hu, C. W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009
-
[24]
(24) Lu, M.; Lü, C. X. Journal of Nanjing University of Science and Technology 2002, 26, 72. [陆明, 吕春绪. 南京理工大学学报, 2002, 26, 72.](24) Lu, M.; Lü, C. X. Journal of Nanjing University of Science and Technology 2002, 26, 72. [陆明, 吕春绪. 南京理工大学学报, 2002, 26, 72.]
-
[25]
(25) Cooper, P. W. Explosives Engineering;Wiley-VCH:Albuquerque NM, 1996; pp 24-26.
(25) Cooper, P. W. Explosives Engineering;Wiley-VCH:Albuquerque NM, 1996; pp 24-26.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 859
- 文章访问数: 1369
- HTML全文浏览量: 75

下载: