Citation: WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang. Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB201302043
苯乙烯在Ag(111)和Ag(110)表面环氧化反应结构敏感性的理论研究
采用密度泛函理论(DFT)对苯乙烯在Ag(110)表面和Ag(111)表面的环氧化反应进行了计算研究. 经计算, 在Ag(110)表面预吸附氧原子更易吸附在3 重穴位(3h), 吸附能为-3.59 eV; 在Ag(111)表面预吸附氧原子的最稳定吸附位是fcc 位, 吸附能为-3.69 eV. 苯乙烯的环氧化反应过程首先经过一个金属中间体, 然后再进一步反应变为产物, 其中经过直链中间体较支链中间体更加有利. Ag(110)面的反应活化能一般大于Ag(111)面的, 并且微观动力学模拟结果表明, Ag(111)表面生成环氧苯乙烷的选择性要明显高于Ag(110)表面(0.38 与 0.003), 原因是Ag(111)面环氧化反应活化能小于苯乙醛及燃烧中间体的活化能, 而在Ag(110)上正相反.
English
Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces
The selective oxidation of styrene on oxygen-covered Ag(110) and Ag(111) surfaces is studied by density functional theory (DFT) calculations with the periodic slab model. On the Ag(110) surface, a pre-adsorbed oxygen atom prefers the 3-fold hollow site (3h) with an adsorption energy of -3.59 eV. On the Ag(111) surface, the most stable adsorption site for a pre-adsorbed oxygen atom is the fcc site, and the adsorption energy is -3.69 eV. The reaction process of the selective oxidation of styrene includes two steps: the formation of surface intermediates (branched oxametallacycle and linear oxametallacycle) and the subsequent formation of different products. The calculated results show that the formation of styrene oxide via the linear oxametallacycle (i.e., the pre-adsorbed atomic oxygen bound to the methylene group in styrene) is the favorable reaction mechanism on both Ag(110) and Ag(111) surfaces. The reaction barriers for the different reaction steps of styrene epoxidation on the Ag(110) surface are generally higher than those on the Ag(111) surface. Moreover, the micro-kinetic simulation results indicate that the relative selectivity towards the formation of styrene oxide on the Ag(111) surface is much higher than that on the Ag(110) surface (0.38 vs 0.003) because the energy barrier for the styrene epoxidation is smaller than that for the formation of phenyl acetaldehyde and its combustion intermediate on Ag(111) surface. The reverse trends occurred on the Ag(110) surface.
-
-
[1]
(1) Barteau, M. A. Surf. Sci. 2006, 600, 5021. doi: 10.1016/j.susc.2006.09.024
(1) Barteau, M. A. Surf. Sci. 2006, 600, 5021. doi: 10.1016/j.susc.2006.09.024
-
[2]
(2) Klust, A.; Madix, R. J. Surf. Sci. 2006, 600, 5025. doi: 10.1016/j.susc.2006.08.049(2) Klust, A.; Madix, R. J. Surf. Sci. 2006, 600, 5025. doi: 10.1016/j.susc.2006.08.049
-
[3]
(3) Serafin, J. G.; Liu, A. C.; Seyedmonir, S. R. J. Mol. Catal. A:Chem. 1998, 131, 157. doi: 10.1016/S1381-1169(97)00263-X(3) Serafin, J. G.; Liu, A. C.; Seyedmonir, S. R. J. Mol. Catal. A:Chem. 1998, 131, 157. doi: 10.1016/S1381-1169(97)00263-X
-
[4]
(4) Bocquet, M. L.; Sautet, P.; Cerda, J.; Carlisle, C. I.;Webb, M. J.;King, D. A. J. Am. Chem. Soc. 2003, 125, 3119. doi: 10.1021/ja027634l(4) Bocquet, M. L.; Sautet, P.; Cerda, J.; Carlisle, C. I.;Webb, M. J.;King, D. A. J. Am. Chem. Soc. 2003, 125, 3119. doi: 10.1021/ja027634l
-
[5]
(5) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2002, 124, 310. doi: 10.1021/ja0118136(5) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2002, 124, 310. doi: 10.1021/ja0118136
-
[6]
(6) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2003, 125, 4034.doi: 10.1021/ja029076g(6) Linic, S.; Barteau, M. A. J. Am. Chem. Soc. 2003, 125, 4034.doi: 10.1021/ja029076g
-
[7]
(7) Park, D. M.; Ghazali, S.; Gau, G. Appl. Catal. 1983, 6 (2), 175.doi: 10.1016/0166-9834(83)80263-2(7) Park, D. M.; Ghazali, S.; Gau, G. Appl. Catal. 1983, 6 (2), 175.doi: 10.1016/0166-9834(83)80263-2
-
[8]
(8) Zhou, L.; Madix, R. J. Surf. Sci. 2009, 603, 1751. doi: 10.1016/j.susc.2008.08.032(8) Zhou, L.; Madix, R. J. Surf. Sci. 2009, 603, 1751. doi: 10.1016/j.susc.2008.08.032
-
[9]
(9) Bocquet, M. L.; Loffreda, D. J. Am. Chem. Soc. 2005, 127,17207. doi: 10.1021/ja051397f(9) Bocquet, M. L.; Loffreda, D. J. Am. Chem. Soc. 2005, 127,17207. doi: 10.1021/ja051397f
-
[10]
(10) Linic, S.; Piao, H.; Adib, K.; Barteau, M. A. Angew. Chem. Int.Edit. 2004, 43, 2918.(10) Linic, S.; Piao, H.; Adib, K.; Barteau, M. A. Angew. Chem. Int.Edit. 2004, 43, 2918.
-
[11]
(11) Christopher, P.; Linic, S. J. Am. Chem. Soc. 2008, 130, 11264.doi: 10.1021/ja803818k(11) Christopher, P.; Linic, S. J. Am. Chem. Soc. 2008, 130, 11264.doi: 10.1021/ja803818k
-
[12]
(12) Chen, H. T.; Chang, J. G.; Ju, S. P.; Chen, H. L. J. Phys. Chem.Lett. 2010, 1, 739. doi: 10.1021/jz900469f(12) Chen, H. T.; Chang, J. G.; Ju, S. P.; Chen, H. L. J. Phys. Chem.Lett. 2010, 1, 739. doi: 10.1021/jz900469f
-
[13]
(13) Barteau, M. A.; Madix, R. J. Surf. Sci. 1981, 103 (2-3), L171.(13) Barteau, M. A.; Madix, R. J. Surf. Sci. 1981, 103 (2-3), L171.
-
[14]
(14) Roberts, J. T.; Madix, R. J. J. Am. Chem. Soc. 1988, 110, 8540.doi: 10.1021/ja00233a038(14) Roberts, J. T.; Madix, R. J. J. Am. Chem. Soc. 1988, 110, 8540.doi: 10.1021/ja00233a038
-
[15]
(15) Lambert, R. M.;Williams, F. J.; Cropley, R. L.; Palermo, A.J. Mol. Catal. A: Chem. 2005, 228 (1-2), 27. doi: 10.1016/j.molcata.2004.09.077(15) Lambert, R. M.;Williams, F. J.; Cropley, R. L.; Palermo, A.J. Mol. Catal. A: Chem. 2005, 228 (1-2), 27. doi: 10.1016/j.molcata.2004.09.077
-
[16]
(16) Hawker, S.; Mukoid, C.; Badyal, J. P. S.; Lambert, R. M. Surf.Sci. Lett. 1989, 219 (3), L615.(16) Hawker, S.; Mukoid, C.; Badyal, J. P. S.; Lambert, R. M. Surf.Sci. Lett. 1989, 219 (3), L615.
-
[17]
(17) Williams, F. J.; Bird, D. P. C.; Palermo, A.; Santra, A. K.;Lambert, R. M. J. Am. Chem. Soc. 2004, 126, 8509. doi: 10.1021/ja039378y(17) Williams, F. J.; Bird, D. P. C.; Palermo, A.; Santra, A. K.;Lambert, R. M. J. Am. Chem. Soc. 2004, 126, 8509. doi: 10.1021/ja039378y
-
[18]
(18) Klust, A.; Madix, R. J. J. Am. Chem. Soc. 2006, 128, 1034. doi: 10.1021/ja054845s(18) Klust, A.; Madix, R. J. J. Am. Chem. Soc. 2006, 128, 1034. doi: 10.1021/ja054845s
-
[19]
(19) Liu, X. Y.; Klust, A.; Madix, R. J.; Friend, C. M. J. Phys. Chem.C 2007, 111, 3675. doi: 10.1021/jp066560n(19) Liu, X. Y.; Klust, A.; Madix, R. J.; Friend, C. M. J. Phys. Chem.C 2007, 111, 3675. doi: 10.1021/jp066560n
-
[20]
(20) Zhou, L.; Madix, R. J. J. Phys. Chem. C 2008, 112, 4725. doi: 10.1021/jp7119558(20) Zhou, L.; Madix, R. J. J. Phys. Chem. C 2008, 112, 4725. doi: 10.1021/jp7119558
-
[21]
(21) Mukoid, C.; Hawker, S.; Badyal, J. P. S.; Lambert, R. M. Catal.Lett. 1990, 4 (1), 57. doi: 10.1007/BF00764871(21) Mukoid, C.; Hawker, S.; Badyal, J. P. S.; Lambert, R. M. Catal.Lett. 1990, 4 (1), 57. doi: 10.1007/BF00764871
-
[22]
(22) Deng, X. Y.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.doi: 10.1021/ja0557031(22) Deng, X. Y.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.doi: 10.1021/ja0557031
-
[23]
(23) Quiller, R. G.; Liu, X. Y.; Friend, C. M. Chemistry-An AsianJournal 2010, 5 (1), 78. doi: 10.1002/asia.v5:1(23) Quiller, R. G.; Liu, X. Y.; Friend, C. M. Chemistry-An AsianJournal 2010, 5 (1), 78. doi: 10.1002/asia.v5:1
-
[24]
(24) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0(24) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[25]
(25) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251(25) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[26]
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[27]
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[28]
(28) Blouml, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953(28) Blouml, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[29]
(29) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys.2000, 113, 9901. doi: 10.1063/1.1329672(29) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys.2000, 113, 9901. doi: 10.1063/1.1329672
-
[30]
(30) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188(30) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[31]
(31) Li,W. X.; Stampfl, C.; Scheffler, M. Phys. Rev. B 2002, 65,075407. doi: 10.1103/PhysRevB.65.075407(31) Li,W. X.; Stampfl, C.; Scheffler, M. Phys. Rev. B 2002, 65,075407. doi: 10.1103/PhysRevB.65.075407
-
[32]
(32) Shi, H. Q.; Stampfl, C. Phys. Rev. B 2007, 76, 075327. doi: 10.1103/PhysRevB.76.075327(32) Shi, H. Q.; Stampfl, C. Phys. Rev. B 2007, 76, 075327. doi: 10.1103/PhysRevB.76.075327
-
[33]
(33) Bocquet, M. L.; Michaelides, A.; Loffreda, D.; Sautet, P.; Alavi,A.; King, D. A. J. Am. Chem. Soc. 2003, 125, 5620. doi: 10.1021/ja0297741(33) Bocquet, M. L.; Michaelides, A.; Loffreda, D.; Sautet, P.; Alavi,A.; King, D. A. J. Am. Chem. Soc. 2003, 125, 5620. doi: 10.1021/ja0297741
-
[34]
(34) Pang, X. Y.; Xing, B.; Xue, L. Q.;Wang, G. C. J. Comput.Chem. 2010, 31, 1618.(34) Pang, X. Y.; Xing, B.; Xue, L. Q.;Wang, G. C. J. Comput.Chem. 2010, 31, 1618.
-
[35]
(35) Xue, L. Q.; Pang, X. Y.;Wang, G. C. J. Comput. Chem. 2009,30, 438. doi: 10.1002/jcc.v30:3(35) Xue, L. Q.; Pang, X. Y.;Wang, G. C. J. Comput. Chem. 2009,30, 438. doi: 10.1002/jcc.v30:3
-
[36]
(36) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. J. Am. Chem.Soc. 2005, 127, 10774. doi: 10.1021/ja043227t(36) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. J. Am. Chem.Soc. 2005, 127, 10774. doi: 10.1021/ja043227t
-
[37]
(37) Torres, D.; Lopez, N.; Illas, F. J. Catal. 2006, 243 (2), 404. doi: 10.1016/j.jcat.2006.08.011(37) Torres, D.; Lopez, N.; Illas, F. J. Catal. 2006, 243 (2), 404. doi: 10.1016/j.jcat.2006.08.011
-
[38]
(38) Lukaski, A. C.; Enever, M. C. N.; Barteau, M. A. Surf. Sci.2007, 601, 3372. doi: 10.1016/j.susc.2007.06.015(38) Lukaski, A. C.; Enever, M. C. N.; Barteau, M. A. Surf. Sci.2007, 601, 3372. doi: 10.1016/j.susc.2007.06.015
-
[39]
(39) Toni ld, K.; Gross, A. J. Chem. Phys. 2010, 132, 224701. doi: 10.1063/1.3439691(39) Toni ld, K.; Gross, A. J. Chem. Phys. 2010, 132, 224701. doi: 10.1063/1.3439691
-
[40]
(40) Grimme, S. J. Comput. Chem. 2006, 27, 1787.(40) Grimme, S. J. Comput. Chem. 2006, 27, 1787.
-
[41]
(41) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.2010, 132, 154104. doi: 10.1063/1.3382344(41) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.2010, 132, 154104. doi: 10.1063/1.3382344
-
[42]
(42) Benco, L.; Bucko, T.; Hafner, J. J. Catal. 2011, 277, 104.(42) Benco, L.; Bucko, T.; Hafner, J. J. Catal. 2011, 277, 104.
-
[43]
(43) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem.Int. Edit. 2007, 46, 2055.(43) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem.Int. Edit. 2007, 46, 2055.
-
[44]
(44) Wang, H. F.; Liu, Z. P. J. Am. Chem. Soc. 2008, 130, 10996.
(44) Wang, H. F.; Liu, Z. P. J. Am. Chem. Soc. 2008, 130, 10996.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 642
- 文章访问数: 1098
- HTML全文浏览量: 11

下载: