Citation: ZHANG Jin-Li, HE Zheng-Hua, HAN You, LI Wei, WU Jiang-Jie-Xing, GAN Zhong-Xue, GU Jun-Jie. Nucleation and Growth of Na2CO3 Clusters in Supercritical Water Using Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2012, 28(07): 1691-1700. doi: 10.3866/PKU.WHXB201205032
超临界水中碳酸钠团簇成核与生长分子动力学模拟
应用分子动力学方法研究了碳酸钠颗粒在超临界水中的成核与生长过程. 计算了温度为700-1100 K、压力在23-30 MPa下碳酸钠的团聚过程, 计算时间为1 ns. 对体系结合能与径向分布函数的分析表明, 碳酸钠成核过程主要受静电作用的影响. 在超临界态下, 水分子与Na+和CO32- 之间的静电作用降低, Na+与CO32- 能够很容易碰撞形成Na2CO3小团簇. 在Na2CO3整个成核过程中, 单个离子的碰撞在前50 ps 内完成, 同时离子碰撞速率达到1030 cm-3·s-1. 另外, 在成核阶段温度的影响比压力更加明显, 温度越高, 离子碰撞速率越快, 形成的初始团簇越多. 而压力对Na2CO3团簇的进一步生长影响较大.
English
Nucleation and Growth of Na2CO3 Clusters in Supercritical Water Using Molecular Dynamics Simulation
The nucleation and growth of Na2CO3 particles in supercritical water were investigated using molecular dynamics simulation. The clustering process of Na2CO3 was studied for 1 ns at a series of state points, across temperature and pressure ranges of 700 to 1100 K and 23 to 30 MPa, respectively. The binding energy and radial distribution function analysis showed that the electrostatic interaction was the main factor affecting the whole Na2CO3 nucleation process. Under supercritical conditions, the electrostatic interaction of water molecules with Na+ and CO32- ions rapidly decreased, allowing Na+ and CO32- ions to readily collide with each other to form small Na2CO3 clusters. During the initial Na2CO3 nucleation process, all the single-ion collisions were complete within 50 ps and the ionic collision rates appeared to be of the order of 1030 cm-3·s-1. Furthermore, the effect of temperature was found to be more important than that of the pressure at the nucleation stage and a higher temperature led to an enhanced collision rate and the formation of more initial Na2CO3 particles. The further growth of the Na2CO3 particles was more dependent on the pressure.
-
Key words:
-
Supercritical water
- / Sodium carbonate
- / Binding energy
- / Collision rate
- / Molecular dynamics
-
-
[1]
(1) Shaw, R.W.; Brill, T. B.; Clifford, A. A.; Eckert, C. A.; Franck,E. U. Chem. Eng. News 1991, 69, 26.
(1) Shaw, R.W.; Brill, T. B.; Clifford, A. A.; Eckert, C. A.; Franck,E. U. Chem. Eng. News 1991, 69, 26.
-
[2]
(2) Valeriani, C.; Sanz, E.; Frenkel, D. J. Chem. Phys. 2005, 122,194501. doi: 10.1063/1.1896348(2) Valeriani, C.; Sanz, E.; Frenkel, D. J. Chem. Phys. 2005, 122,194501. doi: 10.1063/1.1896348
-
[3]
(3) Reverchon, E.; Adami, R. J. Supercrit. Fluids 2006, 37, 1. doi: 10.1016/j.supflu.2005.08.003(3) Reverchon, E.; Adami, R. J. Supercrit. Fluids 2006, 37, 1. doi: 10.1016/j.supflu.2005.08.003
-
[4]
(4) Cansell, F.; Aymonier, C. J. Supercrit. Fluids 2009, 47, 508. doi: 10.1016/j.supflu.2008.10.002(4) Cansell, F.; Aymonier, C. J. Supercrit. Fluids 2009, 47, 508. doi: 10.1016/j.supflu.2008.10.002
-
[5]
(5) Hodes, M.; Marrone, P. A.; Hong, G. T.; Smith, K. A.; Tester, J.W. J. Supercrit. Fluids 2004, 29, 265. doi: 10.1016/S0896-8446(03)00093-7(5) Hodes, M.; Marrone, P. A.; Hong, G. T.; Smith, K. A.; Tester, J.W. J. Supercrit. Fluids 2004, 29, 265. doi: 10.1016/S0896-8446(03)00093-7
-
[6]
(6) Kritzer, P.; Dinjus, E. Chem. Eng. J. 2001, 83, 207. doi: 10.1016/S1385-8947(00)00255-2(6) Kritzer, P.; Dinjus, E. Chem. Eng. J. 2001, 83, 207. doi: 10.1016/S1385-8947(00)00255-2
-
[7]
(7) Bermejo, M. D.; Martín, A.; Queiroz, J. P. S.; Bielsa, I.; Ríos,V.; Cocero, M. J. Chem. Eng. J. 2010, 158, 431. doi: 10.1016/j.cej.2010.01.013(7) Bermejo, M. D.; Martín, A.; Queiroz, J. P. S.; Bielsa, I.; Ríos,V.; Cocero, M. J. Chem. Eng. J. 2010, 158, 431. doi: 10.1016/j.cej.2010.01.013
-
[8]
(8) Kim, K.; Son, S. H.; Kim, K. S.; Kim, K.; Kim, Y. C. Chem. Eng. J. 2010, 165, 170. doi: 10.1016/j.cej.2010.09.012(8) Kim, K.; Son, S. H.; Kim, K. S.; Kim, K.; Kim, Y. C. Chem. Eng. J. 2010, 165, 170. doi: 10.1016/j.cej.2010.09.012
-
[9]
(9) Svishchev, I. M.; Zasetsky, A. Y.; Nahtigal, I. G. J. Phys. Chem. C 2008, 112, 20181. doi: 10.1021/jp803705z(9) Svishchev, I. M.; Zasetsky, A. Y.; Nahtigal, I. G. J. Phys. Chem. C 2008, 112, 20181. doi: 10.1021/jp803705z
-
[10]
(10) Nahtigal, I. G.; Svishchev, I. M. J. Supercrit. Fluids 2009, 50,169. doi: 10.1016/j.supflu.2009.05.006(10) Nahtigal, I. G.; Svishchev, I. M. J. Supercrit. Fluids 2009, 50,169. doi: 10.1016/j.supflu.2009.05.006
-
[11]
(11) Lümmen, N.; Kvamme, B. Phys. Chem. Chem. Phys. 2009, 11,9504.(11) Lümmen, N.; Kvamme, B. Phys. Chem. Chem. Phys. 2009, 11,9504.
-
[12]
(12) Lümmen, N.; Kvamme, B. J. Phys. Chem. B 2008, 112, 12374.doi: 10.1021/jp710156b(12) Lümmen, N.; Kvamme, B. J. Phys. Chem. B 2008, 112, 12374.doi: 10.1021/jp710156b
-
[13]
(13) Li, Y. L.; Guo, L. J.; Zhang, X. M.; Jin, H.; Lu, Y. J. Int. J. Hydrog. Energy 2010, 35, 3036. doi: 10.1016/j.ijhydene.2009.07.023(13) Li, Y. L.; Guo, L. J.; Zhang, X. M.; Jin, H.; Lu, Y. J. Int. J. Hydrog. Energy 2010, 35, 3036. doi: 10.1016/j.ijhydene.2009.07.023
-
[14]
(14) Jin, H.; Lu, Y. J.; Liao, B.; Guo, L. J.; Zhang, X. M. Int. J. Hydrog. Energy 2010, 35, 7151. doi: 10.1016/j.ijhydene.2010.01.099(14) Jin, H.; Lu, Y. J.; Liao, B.; Guo, L. J.; Zhang, X. M. Int. J. Hydrog. Energy 2010, 35, 7151. doi: 10.1016/j.ijhydene.2010.01.099
-
[15]
(15) Xiao, H. Y.; Zhen, Z.; Sun, H. Q.; Cao, X. L.; Li, Z. Q.; Song,X.W.; Cuo, X. H.; Liu, X. H. Acta Phys. -Chim. Sin. 2010, 26,422. [肖红艳, 甄珍, 孙焕泉, 曹绪龙, 李振泉, 宋新旺,崔晓红, 刘新厚. 物理化学学报, 2010, 26, 422.] doi: 10.3866/PKU.WHXB20100216(15) Xiao, H. Y.; Zhen, Z.; Sun, H. Q.; Cao, X. L.; Li, Z. Q.; Song,X.W.; Cuo, X. H.; Liu, X. H. Acta Phys. -Chim. Sin. 2010, 26,422. [肖红艳, 甄珍, 孙焕泉, 曹绪龙, 李振泉, 宋新旺,崔晓红, 刘新厚. 物理化学学报, 2010, 26, 422.] doi: 10.3866/PKU.WHXB20100216
-
[16]
(16) Zhou, J.; Lu, X. H.;Wang, Y. R.; Shi, J. Acta Phys. -Chim. Sin.1999, 15, 1017. [周健, 陆小华, 王延儒, 时钧. 物理化学学报, 1999, 15, 1017.] doi: 10.3866/PKU.WHXB19991112(16) Zhou, J.; Lu, X. H.;Wang, Y. R.; Shi, J. Acta Phys. -Chim. Sin.1999, 15, 1017. [周健, 陆小华, 王延儒, 时钧. 物理化学学报, 1999, 15, 1017.] doi: 10.3866/PKU.WHXB19991112
-
[17]
(17) Liao, R. J.; Zhu, M. Z.; Zhou, X.; Yang, L. J.; Yan, J. M.; Sun,C. X. Acta Phys. -Chim. Sin. 2011, 27, 815. [廖瑞金, 朱孟兆,周欣, 杨丽君, 严家明, 孙才新. 物理化学学报, 2011, 27,815.] doi: 10.3866/PKU.WHXB20110341(17) Liao, R. J.; Zhu, M. Z.; Zhou, X.; Yang, L. J.; Yan, J. M.; Sun,C. X. Acta Phys. -Chim. Sin. 2011, 27, 815. [廖瑞金, 朱孟兆,周欣, 杨丽君, 严家明, 孙才新. 物理化学学报, 2011, 27,815.] doi: 10.3866/PKU.WHXB20110341
-
[18]
(18) Chen, C.; Li,W. Z. Acta Phys. -Chim. Sin. 2009, 25, 507.[陈聪, 李维仲. 物理化学学报, 2009, 25, 507.] doi: 10.3866/PKU.WHXB20090318(18) Chen, C.; Li,W. Z. Acta Phys. -Chim. Sin. 2009, 25, 507.[陈聪, 李维仲. 物理化学学报, 2009, 25, 507.] doi: 10.3866/PKU.WHXB20090318
-
[19]
(19) Shen, Q. C.; Liang,W. C.; Hu, X. B.; Li, H. R. Acta Phys. - Chim. Sin. 2008, 24, 1169. [沈秋婵, 梁婉春, 胡兴邦, 李浩然.物理化学学报, 2008, 24, 1169.] doi: 10.3866/PKU.WHXB20080709(19) Shen, Q. C.; Liang,W. C.; Hu, X. B.; Li, H. R. Acta Phys. - Chim. Sin. 2008, 24, 1169. [沈秋婵, 梁婉春, 胡兴邦, 李浩然.物理化学学报, 2008, 24, 1169.] doi: 10.3866/PKU.WHXB20080709
-
[20]
(20) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon: Oxford, 1987.(20) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon: Oxford, 1987.
-
[21]
(21) Materials Studio Overview. http://accelrys.com/products/materials-studio/ (accessed May 02, 2012)(21) Materials Studio Overview. http://accelrys.com/products/materials-studio/ (accessed May 02, 2012)
-
[22]
(22) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v(22) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v
-
[23]
(23) Sun, H. Macromolecules 1995, 28, 701. doi: 10.1021/ma00107a006(23) Sun, H. Macromolecules 1995, 28, 701. doi: 10.1021/ma00107a006
-
[24]
(24) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford University Press: Oxford, 1989.(24) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford University Press: Oxford, 1989.
-
[25]
(25) Frenkel, D.; Smit, B. Understanding Molecular Simulations: from Al rithms to Applications; Academic Press: San Die ,1996.(25) Frenkel, D.; Smit, B. Understanding Molecular Simulations: from Al rithms to Applications; Academic Press: San Die ,1996.
-
[26]
(26) Berendsen, H. J.; Postma, J. P. J. Chem. Phys. 1984, 18, 3684.(26) Berendsen, H. J.; Postma, J. P. J. Chem. Phys. 1984, 18, 3684.
-
[27]
(27) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695(27) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
-
[28]
(28) Hoffmann, K. H.; Schreiber, M. Computational Physics 1996,268.(28) Hoffmann, K. H.; Schreiber, M. Computational Physics 1996,268.
-
[29]
(29) Anderson, H. C. J. Chem. Phys. 1980, 72, 2384.(29) Anderson, H. C. J. Chem. Phys. 1980, 72, 2384.
-
[30]
(30) Ewald, P. P. Annales de Physique. 1921, 64, 253.(30) Ewald, P. P. Annales de Physique. 1921, 64, 253.
-
[31]
(31) Sun,W.; Huang, S. Y.;Wang, C.W.; Chi, R. A. J. Huazhong Univ. of Sci. & Tech. 2008, 36, 103. [孙炜, 黄素逸, 王存文, 池汝安. 华中科技大学学报, 2008, 36, 103.](31) Sun,W.; Huang, S. Y.;Wang, C.W.; Chi, R. A. J. Huazhong Univ. of Sci. & Tech. 2008, 36, 103. [孙炜, 黄素逸, 王存文, 池汝安. 华中科技大学学报, 2008, 36, 103.]
-
[32]
(32) Becker, R.; Döring,W. Annales de Physique. 1935, 24, 719.(32) Becker, R.; Döring,W. Annales de Physique. 1935, 24, 719.
-
[33]
(33) Volmer, M.;Weber, A. Z. Z. Phys. Chem. 1926, 119, 277.(33) Volmer, M.;Weber, A. Z. Z. Phys. Chem. 1926, 119, 277.
-
[34]
(34) Debenedetti, P. G. Metastable Liquids: Concept and Principles;Princeton Press: NJ, 1996.(34) Debenedetti, P. G. Metastable Liquids: Concept and Principles;Princeton Press: NJ, 1996.
-
[35]
(35) Stillinger, F. H. J. Chem. Phys. 1963, 38, 1486. doi: 10.1063/1.1776907(35) Stillinger, F. H. J. Chem. Phys. 1963, 38, 1486. doi: 10.1063/1.1776907
-
[36]
(36) Yasuoka, K.; Matsumoto, M. J. Chem. Phys. 1998, 109, 8451.doi: 10.1063/1.477509(36) Yasuoka, K.; Matsumoto, M. J. Chem. Phys. 1998, 109, 8451.doi: 10.1063/1.477509
-
[37]
(37) Rozas, R.; Kraska, T. J. Phys. Chem. C 2007, 111, 15784. doi: 10.1021/jp073713d(37) Rozas, R.; Kraska, T. J. Phys. Chem. C 2007, 111, 15784. doi: 10.1021/jp073713d
-
[38]
(38) Lümmen, N.; Kvamme, B. J. Chem. Phys. 2010, 132, 014702.doi: 10.1063/1.3270158(38) Lümmen, N.; Kvamme, B. J. Chem. Phys. 2010, 132, 014702.doi: 10.1063/1.3270158
-
[39]
(39) Guo, G. J.; Zhang, Y. G.; Li, M. J. Chem. Phys. 2008, 128,194504. doi: 10.1063/1.2919558(39) Guo, G. J.; Zhang, Y. G.; Li, M. J. Chem. Phys. 2008, 128,194504. doi: 10.1063/1.2919558
-
[40]
(40) Wernet, P.; Testemale, D.; Hazemann, J. L.; Ar ud, R.J. Chem. Phys. 2005, 123, 154503. doi: 10.1063/1.2064867(40) Wernet, P.; Testemale, D.; Hazemann, J. L.; Ar ud, R.J. Chem. Phys. 2005, 123, 154503. doi: 10.1063/1.2064867
-
[41]
(41) Skarmoutsos, I.; Guardia, E. J. Chem. Phys. 2010, 132, 074502.doi: 10.1063/1.3305326(41) Skarmoutsos, I.; Guardia, E. J. Chem. Phys. 2010, 132, 074502.doi: 10.1063/1.3305326
-
[42]
(42) Kalinichev, A. G.; Bass, J. D. J. Phys. Chem. A 1997, 101, 9720.doi: 10.1021/jp971218j(42) Kalinichev, A. G.; Bass, J. D. J. Phys. Chem. A 1997, 101, 9720.doi: 10.1021/jp971218j
-
[43]
(43) Skarmoutsos, I.; Samios, J. J. Phys. Chem. B 2006, 110, 21931.doi: 10.1021/jp060955p(43) Skarmoutsos, I.; Samios, J. J. Phys. Chem. B 2006, 110, 21931.doi: 10.1021/jp060955p
-
[44]
(44) Römer, F.; Kraska, T. J. Supercrit. Fluids 2010, 55, 769. doi: 10.1016/j.supflu.2010.08.010(44) Römer, F.; Kraska, T. J. Supercrit. Fluids 2010, 55, 769. doi: 10.1016/j.supflu.2010.08.010
-
[45]
(45) Nahtigal, I. G.; Zasetsky, A. Y.; Svishchev, I. M. J. Phys. Chem. B 2008, 112, 7537. doi: 10.1021/jp709688g(45) Nahtigal, I. G.; Zasetsky, A. Y.; Svishchev, I. M. J. Phys. Chem. B 2008, 112, 7537. doi: 10.1021/jp709688g
-
[46]
(46) Römer, F.; Kraska, T. J. Chem. Phys. 2007, 127, 234509. doi: 10.1063/1.2805063(46) Römer, F.; Kraska, T. J. Chem. Phys. 2007, 127, 234509. doi: 10.1063/1.2805063
-
[47]
(47) Sue, K.; Kawasaki, S.; Suzuki, M.; Hakuta, Y.; Hayashi, H.;Arai, K.; Takebayashi, Y.; Yoda, S.; Furuya, T. Chem. Eng. J.2011, 166, 947. doi: 10.1016/j.cej.2010.11.080
(47) Sue, K.; Kawasaki, S.; Suzuki, M.; Hakuta, Y.; Hayashi, H.;Arai, K.; Takebayashi, Y.; Yoda, S.; Furuya, T. Chem. Eng. J.2011, 166, 947. doi: 10.1016/j.cej.2010.11.080
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 779
- 文章访问数: 2456
- HTML全文浏览量: 19

下载: