Citation: YU Li-Qiu, CHEN Shu-Li, CHANG Sha, LI Yun-Hu, GAO Yin-Yi, WANG Gui-Ling, CAO Dian-Xue. Supercapacitance of NiCo2O4 Nanowire Arrays Grown on Nickel Foam[J]. Acta Physico-Chimica Sinica, 2011, 27(03): 615-619. doi: 10.3866/PKU.WHXB20110317
泡沫镍负载的NiCo2O4纳米线阵列电极的超级电容性能
采用无模板自然生长法制备了泡沫镍支撑的NiCo2O4纳米线阵列电极, 利用扫描电镜(SEM)和透射电镜(TEM)观测了纳米线的表面形貌, 利用X射线衍射(XRD)分析了纳米线的结构, 通过循环伏安、恒流充放电和交流阻抗测试了电极的超级电容性能. 结果表明: NiCo2O4纳米线直径约为500-1000 nm、长度约为10 μm, 垂直且密集地生长在泡沫镍骨架上. 纳米线阵列电极的放电比容量高达741 F·g-1, 循环420次后比容量仍保持在655 F·g-1, 电化学阻抗测试其电荷传递电阻仅为0.33 Ω, 420次循环后电荷传递电阻仅增加0.06 Ω.
English
Supercapacitance of NiCo2O4 Nanowire Arrays Grown on Nickel Foam
We prepared an electrode consisting of NiCo2O4 nanowire arrays that stand freely on nickel foam by a template-free growth method. Its morphology was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase structure of the nanowires was analyzed by X-ray diffraction (XRD). The supercapacitance of the electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge testing, and electrochemical impedance spectroscopy. The results showed that the nanowires were nearly vertical grow on and densely cover the nickel foam substrate. The nanowires have diameters around 500-1000 nm and lengths up to around 10 μm. The NiCo2O4 nanowire arrays have a specific capacitance of 741 F·g-1 and this value is 655 F·g-1 after 420 charge-discharge cycles. Electrochemical impedance spectroscopy measurements showed that the charge transfer resistance was only 0.33 Ω and this increased by only 0.06 Ω after 420 cycles.
-
Key words:
-
NiCo2O4
- / Nanowire array
- / Template-free growth method
- / Nickel foam
- / Surpercapacitor
-
-
[1]
1 Burke, A. Electrochim. Acta 2007, 53, 1083.
1 Burke, A. Electrochim. Acta 2007, 53, 1083.
-
[2]
2 Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.2 Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
-
[3]
3 Burke, A. J. Power Sources 2000, 91, 37.3 Burke, A. J. Power Sources 2000, 91, 37.
-
[4]
4 Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Inter. J. Hydrog. Energy 2009, 34, 4889.4 Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Inter. J. Hydrog. Energy 2009, 34, 4889.
-
[5]
5 Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.5 Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.
-
[6]
6 Tian, Y.; Yan, J. W.; Liu, X. X.; Xu, R.; Yi, B. L. Acta Phys. -Chim. Sin. 2010, 26, 2151.6 Tian, Y.; Yan, J. W.; Liu, X. X.; Xu, R.; Yi, B. L. Acta Phys. -Chim. Sin. 2010, 26, 2151.
-
[7]
[田 颖, 阎景旺, 刘小雪, 薛 荣, 衣宝廉. 物理化学学报, 2010, 26, 2151].[田 颖, 阎景旺, 刘小雪, 薛 荣, 衣宝廉. 物理化学学报, 2010, 26, 2151].
-
[8]
7 Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.7 Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
-
[9]
8 Li, Y.; Tan, B.; Wu, Y. J. Am. Chem. Soc. 2006, 128, 14258.8 Li, Y.; Tan, B.; Wu, Y. J. Am. Chem. Soc. 2006, 128, 14258.
-
[10]
9 Li, Y.; Tan, B.; Wu, Y. Nano Lett. 2008, 8, 265.9 Li, Y.; Tan, B.; Wu, Y. Nano Lett. 2008, 8, 265.
-
[11]
10 Gao, Y. Y.; Chen, S. L.; Cao, D. X.; Wang, G. L.; Yin, J. L. J. Power Sources 2010, 195, 1757.10 Gao, Y. Y.; Chen, S. L.; Cao, D. X.; Wang, G. L.; Yin, J. L. J. Power Sources 2010, 195, 1757.
-
[12]
11 Wang, G.; Cao, D.; Yin, C.; Gao, Y.; Yin, J.; Cheng, L. Chem. Mater. 2009, 21, 5112.11 Wang, G.; Cao, D.; Yin, C.; Gao, Y.; Yin, J.; Cheng, L. Chem. Mater. 2009, 21, 5112.
-
[13]
12 Li, Y.; Tan, B.; Wu, Y. Chem. Mater. 2008, 20, 2602.12 Li, Y.; Tan, B.; Wu, Y. Chem. Mater. 2008, 20, 2602.
-
[14]
13 Li, Y.; Hasin, P.; Wu, Y. Adv. Mater. 2010, 22, 1926.13 Li, Y.; Hasin, P.; Wu, Y. Adv. Mater. 2010, 22, 1926.
-
[15]
14 Wu, G.; Li, N.; Zhou, D. R.; Mitsuo, K.; Xu, B. Q. J. Solid State Chem. 2004, 177, 3682.14 Wu, G.; Li, N.; Zhou, D. R.; Mitsuo, K.; Xu, B. Q. J. Solid State Chem. 2004, 177, 3682.
-
[16]
15 Hu, C. C.; Lee, Y. S.; Wen, T. C. Mater. Chem. Phys. 1997, 48, 246.15 Hu, C. C.; Lee, Y. S.; Wen, T. C. Mater. Chem. Phys. 1997, 48, 246.
-
[17]
16 Cui, B.; Lin, H.; Li, J.B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1441.16 Cui, B.; Lin, H.; Li, J.B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1441.
-
[18]
17 Singh, R. N.; Koenig, J. F.; Poillerat, G.; Chartier, P. J. Electrochem. Soc. 1990, 137, 1408.17 Singh, R. N.; Koenig, J. F.; Poillerat, G.; Chartier, P. J. Electrochem. Soc. 1990, 137, 1408.
-
[19]
18 Chi, B.; Lin, H.; Li, J.; Wang, N.; Yang, J. Inter. J. Hydrog. Energy 2006, 31, 1210.
18 Chi, B.; Lin, H.; Li, J.; Wang, N.; Yang, J. Inter. J. Hydrog. Energy 2006, 31, 1210.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 2415
- 文章访问数: 3281
- HTML全文浏览量: 27

下载: