从色谱分离到智慧医疗所涉及共同的数学物理本质:不可逆性

梁恒 罗元园

引用本文: 梁恒,  罗元园. 从色谱分离到智慧医疗所涉及共同的数学物理本质:不可逆性[J]. 色谱, 2019, 37(4): 367-375. doi: 10.3724/SP.J.1123.2018.12008 shu
Citation:  LIANG Heng,  LUO Yuanyuan. Common mathematical-physical essence involved from chromatographic separation to intelligent medicine: irreversibility[J]. Chinese Journal of Chromatography, 2019, 37(4): 367-375. doi: 10.3724/SP.J.1123.2018.12008 shu

从色谱分离到智慧医疗所涉及共同的数学物理本质:不可逆性

  • 基金项目:

    国家自然科学基金项目(21377102);国家科技支撑计划重点项目(2009BAK59B02-04).

摘要: 溶质带中的众多分子在固定相-流动相环境中的色谱分离过程能够类比成疾病高危人群在多种暴露因素的疾病严重程度排序。色谱过程和机器疾病诊断-医嘱的共性在于对成分或个体疾病状态的分离或分类,二者都表现出随时间演化的不可逆性,但前者属于线性非平衡热力学而后者属于耗散结构的非线性非平衡热力学。当将科学视野从药物检测和制备扩展到循证医学、离散数学(公理集合论、概率测度)、人工智能(AI)-云计算领域时,对流-扩散方程和非平衡热力学中的不可逆性就成了色谱分离和智慧医疗两个交叉领域的共同的、核心的数学物理本质。抓住不可逆性这一学科间的共性特征,构建和发展这两个领域统一的、全覆盖的数学构架,具有深远的科学和现实意义。

English

    1. [1] Liang H, Liu Q, OuYang L F. Non-equilibrium Thermodynamics in Nonlinear Chromatography and Electrophoresis:Theory and Applications, in Advances in Chromatography. New York:CRC Press, 2014

    2. [2] Liang H, Lin B C. J Chromatogr A, 1998, 828:3

    3. [3] Liang H, Wang Z G, Lin B C, et al. J Chromatogr A, 1997, 763:237

    4. [4] Liang H. Chinese Journal of Chromatography, 2007, 25(5):664 梁恒. 色谱, 2007, 25(5):664

    5. [5] Liang H, Jia Z B. Chinese Journal of Chromatography, 2007, 25(6):785 梁恒, 贾政斌. 色谱, 2007, 25(6):785

    6. [6] Liang H, Liu Y. J Chromatogr A, 2004, 1040:19

    7. [7] Liang H, Liu X L. Science China B, 2004, 47(6):443 梁恒, 刘小龙. 中国科学B, 2004, 47(6):443

    8. [8] OuYang L F, Qian L, Liang H, et al. J Sep Sci, 2013, 36:645

    9. [9] Liu Q, OuYang L F, Liang H, et al. J Sep Sci, 2012, 35:1411

    10. [10] Yusuf S, Cairns J A, Camm A J, et al. Evidence-Based Cardiology. 3rd ed. Oxford:Blackwell Publishing Ltd, 2010

    11. [11] Zhao Y M. Clinical Epidemiology and Evidence-based Medicine Series:Clinical Research Methods and Practical Techniques. Beijing:Chemical Industry Press, 2017 赵一鸣. 临床流行病学和循证医学系列:临床研究方法与实用技巧. 北京:化学工业出版社, 2017

    12. [12] Kavin M B, James F M. Stroke. Oxford:John Wiley & Sons, 2013

    13. [13] Chen Y L. GRADE in the Applications of Practical Guide and System Evaluation. Lanzhou:Lanzhou University Press, 2017 陈耀龙. GRADE在系统评价和实践指南中的应用. 兰州:兰州大学出版社, 2017

    14. [14] Zhao Y M, Qian J, Zhong S G. Core Theory and Clinical Practical Analysis of Evidence-Based Medicine. Chengdu:Sichuan University Press, 2018 赵玉敏, 钱劲, 种世桂. 循证医学核心理论与临床实践分析. 成都:四川大学出版社, 2018

    15. [15] WHO Library. Prevention of Recurrent Heart Attacks and Strokes in Low and Middle Income Populations:Evidence-Based Recommendations for Policy-Makers and Health Professionals. Switzerland:World Health Organization, 2003

    16. [16] Glyn E, Adrian E, Rachel T. Shared Decision Making in Health Care:Achieving Evidence-Based Patient Choice. 3rd ed. Oxford:Oxford University Press, 2016

    17. [17] Brahmajee K N, Timir S B. Inpatient Cardiovascular Medicine. Hoboken:John Wiley & Sons Inc., 2014

    18. [18] Olson K, Young R A, Schultz L Z. Handbook of Qualitative Health Research for Evidence-Based Practice. New York:Springer Science+Business Media New York, 2016

    19. [19] Qu W L, Geng S Y, Zhang L A. Discrete Mathematics. Beijing:Higher Education Press, 2012 屈婉玲, 耿素云, 张立昂. 离散数学. 北京:高等教育出版社, 2012

    20. [20] Kenneth H R. Discrete Mathematics and Its Application. 8th ed. Beijing:Mechanical Industry Publishing House, 2017

    21. [21] Kohar R. Basic Discrete Mathematics. Singapore:World Scientific, 2016

    22. [22] Wang R G, Wang X H, Yang J, et al. Discrete Mathematics and its Application. Beijing:Mechanical Industry Publishing House, 2017 汪荣贵, 王晓华, 杨娟, 等. 离散数学及其应用. 北京:机械工业出版社, 2017

    23. [23] Cantor G. The Theoretical Basis of Transfinite Numbers. Chen J, Liu X L, transl. Beijing:The Commercial Press, 2016 Cantor G. 超穷数理论基础. 陈杰, 刘晓力, 译. 北京:商务印书馆, 2016

    24. [24] Zhang J W. Introduction of Axiomatic Set Theory. Beijing:Science Press, 1991 张锦文. 公理集合论导引. 北京:科学出版社, 1991

    25. [25] Robert L V. Set Theory:An Introduction. Boston:Birkhauser Boston, 2016

    26. [26] Roussas G G. An Introduction to Measure-Theoretic Probability. 2nd ed. Harbin:Harbin University of Technology Press, 2016

    27. [27] Sheldon M. Ross, Introduction to Probability Models. 11th ed. Beijing:Posts & Telecom Press, 2015

    28. [28] Hari B, Arlen B, Carl P. Measure and Integration. Spring Cham Heidelberg:International Publishing Switzerland, 2016

    29. [29] Gogi P. Applications of Measure Theory to Statistics. Cham:Springer International Publishing Switzerland, 2016

    30. [30] Vigirdas M. Integral and Measure:From Rather Simple to Rather Complex. London:ISTE Ltd, 2014

    31. [31] Russell L, Yuval P. Probability on Trees and Networks. Cambridge:Cambridge University Press, 2016

    32. [32] Wu J Z, Zhang Q. Non-Additive Measure Theory and Multi-criteria Decision-Making. Beijing:Science Press, 2014 武建章, 张强. 非可加测度论与多准则决策. 北京:科学出版社, 2014

    33. [33] Paul R H. Measure Theory. New York:Springer-Verlag New York, 2007

    34. [34] Ethem A. Machine Learning:The New AI. Cambridge:MIT Press, 2016

    35. [35] Bruce R. Statistical and Machine-Learning Data Mining:Techniques for Better Predictive Modeling and Analysis of Big Data. 3rd Ed. Boca Raton:CRC Press, 2017

    36. [36] Zhou Z H, Machine Learning, Beijing:Tsinghua University Press, 2016 周志华. 机器学习, 北京:清华大学出版社, 2016

    37. [37] Peter F. Machine Learning:the Art and Science of Algorithms that Make Sense of Data. Duan F, transl. Beijing:Posts & Telecom Press, 2016 Peter F. 机器学习. 段菲, 译. 北京:人民邮电出版社, 2016

    38. [38] Nilsson N J. Understanding Beliefs. Wang F Y, Zhao X L, transl. Beijing:China Machine Press, 2016 Nilsson N J. 理解信念:人工智能的科学理解. 王飞跃, 赵学亮, 译. 北京:机械工业出版社, 2016

    39. [39] Daphne K, Nir F. Probabilistic Graphical Models:Principles and Techniques. Wang F Y, Han S Q, transl. Beijing:Tsinghua University Press, 2009 Daphne K, Nir F. 概率图模型:原理和技术. 王飞跃, 韩素青, 译. 北京:清华大学出版社, 2015

    40. [40] Lake B M, Salakhutdinov R, Tenenbaum J B. Science, 2015, 350(6266):1332

    41. [41] Lake B M, Ullman T D, Tenenbaum J B, et al. Behavioral & Brain Sciences, 2017, 40:1

    42. [42] Prigogine I. Introduction to Thermodynamics of Irreversible Processes. New York:Interscience Publishers, 1968

    43. [43] de Groot S R, Mazur P. Non-Equilibrium Thermodynamics. Amsterdam:Interscience Publishers, 1962

    44. [44] Gyarmati I, Non-equilibrium Thermodynamics:Field Theory and Variational Principles. Berlin:Springer, 1970

    45. [45] Denbigh K G, Denbigh J S. Entropy in Relation to Incomplete Knowledge. Cambridge:Cambridge University Press, 1985

    46. [46] Kondepudi D K, Prigogine I. Modern Thermodynamics:From Heat Engines to Dissipative Structures. Chichester:John Wiley & Sons, 1998

    47. [47] Keizer J. Statistical Thermodynamics of Nonequilibrium Processes. New York:Springer-Verlag, 1987

    48. [48] Kleidon A, Lorenz R. Non-equilibrium Thermodynamics and the Production of Entropy:Life, Earth, and Beyond. Berlin:Springer, 2005

    49. [49] Glansdorff P, Prigogine I. Thermodynamic Theory of Structure:Stability and Fluctuations. London:Wiley-Interscience, 1971

    50. [50] Prigogine I, Stengers I. Order out of Chaos:Man's New Dialogue with Nature. Toronto:Bantam Books, 1984

    51. [51] Prigogine I. From Being to Becoming:Time and Complexity in the Physical Sciences, San Francisco:W. H. Freeman, 1980

    52. [52] 机器人网. 谭铁牛院士:人工智能新动态. (2017-11-25)[2018-01-08]. https://robot.ofweek.com/2018-01/ART-8321203-8500-30187278.html Robot Network. Academician Tian T N:New Trends of Artificial Intelligence. (2017-11-25)[2018-01-08]. https://robot.ofweek.com/2018-01/ART-8321203-8500-30187278.html

    53. [53] Forbes Insights. Cloud Computing is Vital to the Future Society.[2018-02-25]. https://www.forbes.com/forbesinsights/index.html

    54. [54] George D, Lehrach W, Kansky K, et al. Science, 2017, 358:2612

    55. [55] Sabour S, Frosst N, Hinton G E. 31st Conference on Neural Information Processing Systems. Long Beach:Neural Information Processing Systems (NIPS), 2017:4

    56. [56] Liang H, Cheng X L, Ma Y F. Anal Chem, 2009, 81(6):2059

    57. [57] Statistical Information Center of National Health and Family Planning Commission, Center for Prevention and Control of Chronic Noncommunicable Diseases in Chinese Center for Disease Control and Prevention. Data Set of Chinese Death Cause Surveillance. Beijing:Popular Science Press, 2014 国家卫生和计划生育委员会统计信息中心, 中国疾病防治控制中心慢性非传染性疾病预防控制中心. 中国死因监测数据集. 北京:科学普及出版社, 2014

    58. [58] Wang L D. Report on Prevention and Treatment of Stroke in China. Beijing:People's Medical Publishing House, 2016 王陇德. 中国脑卒中防治报告. 北京:人民卫生出版社, 2016

    59. [59] Xu G, Ma M, Liu X, et al. Stroke, 2013, 44(7):1775

    60. [60] Sohl-Dickstein J, Weiss E A, Maheswaranathan N, et al. ICML'15 Proceedings of the 32nd International Conference on International Conference on Machine Learning, Vol 37. Lille:International Machine Learning Society (IMLS). 2015:2256

    61. [61] Liu X. Methods and Applications of Longitudinal Data Analysis. Beijing:Higher Education Press, 2015

    62. [62] Weng S F, Reps J, Kai J, et al. PLoS One, 2017, 12(4):e0174944

    63. [63] Silver D, Schrittwieser J, Simonyan K, et al. Nature, 2017, 550:354

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  851
  • HTML全文浏览量:  99
文章相关
  • 收稿日期:  2018-12-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章