基于四面体DNA纳米材料的DNA传感器的研制

刘嘉丽 邓燕 李秋霞 管燕 杨通 孟爽 杨云慧 胡蓉

引用本文: 刘嘉丽, 邓燕, 李秋霞, 管燕, 杨通, 孟爽, 杨云慧, 胡蓉. 基于四面体DNA纳米材料的DNA传感器的研制[J]. 分析化学, 2022, 50(9): 1308-1318. doi: 10.19756/j.issn.0253-3820.221024 shu
Citation:  LIU Jia-Li,  DENG Yan,  LI Qiu-Xia,  GUAN Yan,  YANG Tong,  MENG Shuang,  YANG Yun-Hui,  HU RONG. Development of DNA Sensor Based on Tetrahedral DNA Nanomaterials[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1308-1318. doi: 10.19756/j.issn.0253-3820.221024 shu

基于四面体DNA纳米材料的DNA传感器的研制

    通讯作者: 杨云慧,E-mail:yyhui2002@aliyun.com; 胡蓉,E-mail:hudirong_168@163.com
  • 基金项目:

    国家自然科学基金项目(No.21765026)资助。

摘要: 四面体DNA纳米材料(TDN)具有机械性能优越、结构稳定、合成方法简单、合成产率高、可特异性识别等优点。本研究构建了一种基于TDN的电化学传感平台用于高灵敏检测DNA。使用性能优良的石墨烯-纳米金颗粒复合材料作为基底,可以进一步提高灵敏度。利用金属有机框架材料Fe-MIL-88-NH2(Fe-MOF)作为信号探针,检测时不需要酸处理与预处理过程,可以节约检测时间。同时,Fe-MOF易功能化,表面负载贵金属纳米粒子后,易修饰上核酸或蛋白质分子,简化了修饰过程。当目标DNA存在时,通过检测Fe-MOF材料的信号峰,实现了对DNA的检测。本方法检测目标DNA的线性范围为0.01~140 pmol/L,线性方程为I=2.858×lgc(pmol/L)+6.488(R2=0.9935),检出限(LOD,3σ)为4.5 fmol/L。

English


    1. [1]

      GUT I G. Hum. Mutat., 2001, 17(6):475-492.GUT I G. Hum. Mutat., 2001, 17(6):475-492.

    2. [2]

      WANG J, CAI K, ZHANG R, HE X, MA X. Anal. Chem., 2020, 92(13):9399-9404.WANG J, CAI K, ZHANG R, HE X, MA X. Anal. Chem., 2020, 92(13):9399-9404.

    3. [3]

      LIU J L, MA Y C, YANG T, HU R, YANG Y H. Microchim. Acta, 2021, 188(8):266.LIU J L, MA Y C, YANG T, HU R, YANG Y H. Microchim. Acta, 2021, 188(8):266.

    4. [4]

      SCHORKN J, FALLIN D, LANCHBURY S. Clin. Genet., 2010, 58(4):250-264.SCHORKN J, FALLIN D, LANCHBURY S. Clin. Genet., 2010, 58(4):250-264.

    5. [5]

      WANG C C, CHEN C A, JONG Y J, KOU H S. Anal. Chem., 2018, 90:11599-11606.WANG C C, CHEN C A, JONG Y J, KOU H S. Anal. Chem., 2018, 90:11599-11606.

    6. [6]

      KAUSAR A, OSMAN E A, GADZIKWA T. Analyst, 2016, 141:4272-4277.KAUSAR A, OSMAN E A, GADZIKWA T. Analyst, 2016, 141:4272-4277.

    7. [7]

      QIU L P, WU Z S, SHEN G L, YU R Q. Anal. Chem., 2011, 83:3050-3057.QIU L P, WU Z S, SHEN G L, YU R Q. Anal. Chem., 2011, 83:3050-3057.

    8. [8]

      CAGNIN S, CARABALLO M, GUIDUCCI C, MARTINI P, ROSS M, SANTAANA M, DANLEY D, WEST T, LANFRANCHI G. Sensors, 2009, 9(4):3122-3148.CAGNIN S, CARABALLO M, GUIDUCCI C, MARTINI P, ROSS M, SANTAANA M, DANLEY D, WEST T, LANFRANCHI G. Sensors, 2009, 9(4):3122-3148.

    9. [9]

      ROZYCKA M, COLINS N, STRATTON M R, WOOSTER R. Genomics, 2000, 70(1):34-40.ROZYCKA M, COLINS N, STRATTON M R, WOOSTER R. Genomics, 2000, 70(1):34-40.

    10. [10]

      TIMOTHY J G, LLOYD M S. Anal. Chem., 2000, 72(14):3298-3302.TIMOTHY J G, LLOYD M S. Anal. Chem., 2000, 72(14):3298-3302.

    11. [11]

      RUIZ-PONTE C, CARRACEDO A, BARROS F. Clin. Chim. Acta, 2006, 363(1-2):138-146.RUIZ-PONTE C, CARRACEDO A, BARROS F. Clin. Chim. Acta, 2006, 363(1-2):138-146.

    12. [12]

      EDDAOUDI M, KIM J, ROSI N, VODAK D, WACHTER J, O'KEEFFE M, YAGHI O M. Science, 2002, 295(5554):469-472.EDDAOUDI M, KIM J, ROSI N, VODAK D, WACHTER J, O'KEEFFE M, YAGHI O M. Science, 2002, 295(5554):469-472.

    13. [13]

      DAVYDOVSKAYA P, RANFT A, LOTSCH B V. Anal. Chem., 2014, 86(14):6948-6958.DAVYDOVSKAYA P, RANFT A, LOTSCH B V. Anal. Chem., 2014, 86(14):6948-6958.

    14. [14]

      YU L Q, YAN X P. Chem. Commun., 2013, 49(21):2142-2144.YU L Q, YAN X P. Chem. Commun., 2013, 49(21):2142-2144.

    15. [15]

      XIA W, MAHMOOD A, ZOU R Q, XU Q. Energy Environ. Sci., 2015, 8(7):1837-1866.XIA W, MAHMOOD A, ZOU R Q, XU Q. Energy Environ. Sci., 2015, 8(7):1837-1866.

    16. [16]

      NA K, CHOI K M, YAGHI O M, SOMORJAIG A. Nano Lett., 2014, 14(10):5979-5983.NA K, CHOI K M, YAGHI O M, SOMORJAIG A. Nano Lett., 2014, 14(10):5979-5983.

    17. [17]

      VALVEKENS P, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V, VOS D D. J. Catal., 2014, 317:1-10.VALVEKENS P, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V, VOS D D. J. Catal., 2014, 317:1-10.

    18. [18]

      SIMON-YARZA T, MIELCAREK A, COUVREUR P, SERRE C. Adv. Mater., 2018, 30(37):1707365.SIMON-YARZA T, MIELCAREK A, COUVREUR P, SERRE C. Adv. Mater., 2018, 30(37):1707365.

    19. [19]

      ZHANG L Y, LIU C, GAO Y, LI Z H, XING J, REN W Z, ZHANG L L, LI A G, LU G M, WU A G, ZENG L Y. Adv. Healthcare Mater., 2018, 7(24):1801144.ZHANG L Y, LIU C, GAO Y, LI Z H, XING J, REN W Z, ZHANG L L, LI A G, LU G M, WU A G, ZENG L Y. Adv. Healthcare Mater., 2018, 7(24):1801144.

    20. [20]

      CUI C L, LIU Y Y, XU H B, LI S Z, ZHANG W N, CUI P, HUO F W. Small, 2014, 10(18):3672-3676.CUI C L, LIU Y Y, XU H B, LI S Z, ZHANG W N, CUI P, HUO F W. Small, 2014, 10(18):3672-3676.

    21. [21]

      LI D L, ZHANG X, MA Y C, DENG Y, HU R, YANG Y H. Anal. Method, 2018, 10(26):3273-3279.LI D L, ZHANG X, MA Y C, DENG Y, HU R, YANG Y H. Anal. Method, 2018, 10(26):3273-3279.

    22. [22]

      LIU T Z, HU R, ZHANG X, ZHANG K L, LIU Y, ZHANG X B, BAI R Y, LI D L, YANG Y H. Anal. Chem., 2016, 88(24):12516-12523.LIU T Z, HU R, ZHANG X, ZHANG K L, LIU Y, ZHANG X B, BAI R Y, LI D L, YANG Y H. Anal. Chem., 2016, 88(24):12516-12523.

    23. [23]

      BU N N, TANG C X, HE X W, YIN X B. Chem. Commun., 2011, 47(27):7689-7691.BU N N, TANG C X, HE X W, YIN X B. Chem. Commun., 2011, 47(27):7689-7691.

    24. [24]

      PEI H, ZUO X L, PAN D, SHI J Y, HUANG Q, FAN C H. NPG Asia Mater., 2013, 5(6):51.PEI H, ZUO X L, PAN D, SHI J Y, HUANG Q, FAN C H. NPG Asia Mater., 2013, 5(6):51.

    25. [25]

      WANG D F, VIETZ C, SCHROEDER T, ACUNNA G, LALKENS B, TINNEFELD P. Nano Lett., 2017, 17(9):5368-5374.WANG D F, VIETZ C, SCHROEDER T, ACUNNA G, LALKENS B, TINNEFELD P. Nano Lett., 2017, 17(9):5368-5374.

    26. [26]

      WANG J S, QIN H S, WANG F M, REN J S, QU X G. Chem.-Eur. J., 2017, 23(47):11226-11229.WANG J S, QIN H S, WANG F M, REN J S, QU X G. Chem.-Eur. J., 2017, 23(47):11226-11229.

    27. [27]

      WANG J P, LEONG M C E, LEONG Z W, KUAN W S, LEONG D T. Anal. Chem., 2017, 89(12):6900-6906.WANG J P, LEONG M C E, LEONG Z W, KUAN W S, LEONG D T. Anal. Chem., 2017, 89(12):6900-6906.

    28. [28]

      WANG S, ZHANG L Q, WAN S, CANSIZ S, CUI C, LIU Y, CAI R, HONG C Y, TENG I T, SHI M L, WU Y, DONG Y Y, TAN W H. ACS Nano, 2017, 11(4):3943-3949.WANG S, ZHANG L Q, WAN S, CANSIZ S, CUI C, LIU Y, CAI R, HONG C Y, TENG I T, SHI M L, WU Y, DONG Y Y, TAN W H. ACS Nano, 2017, 11(4):3943-3949.

    29. [29]

      LIN Y, JIA J P, YANG R, CHEN D Z, WANG J, LUO F, GUO L H, QIU B, LIN Z Y. Anal. Chem., 2019, 91(5):3717-3724.LIN Y, JIA J P, YANG R, CHEN D Z, WANG J, LUO F, GUO L H, QIU B, LIN Z Y. Anal. Chem., 2019, 91(5):3717-3724.

    30. [30]

      PEI H, LU N, WEN Y L, SONG S P, LIU Y, YAN H, FAN C H. Adv. Mater., 2010, 22(42):4754-4758.PEI H, LU N, WEN Y L, SONG S P, LIU Y, YAN H, FAN C H. Adv. Mater., 2010, 22(42):4754-4758.

    31. [31]

      LIN M H, SONG P, ZHOU G B, ZUO X L, ALDALBAHI A, LOU X D, SHI J Y, FAN C H. Nat. Protoc., 2016, 11(7):1244-1263.LIN M H, SONG P, ZHOU G B, ZUO X L, ALDALBAHI A, LOU X D, SHI J Y, FAN C H. Nat. Protoc., 2016, 11(7):1244-1263.

    32. [32]

      FRENS G. Nat. Phys. Sci., 1973, 241(105):20-22.FRENS G. Nat. Phys. Sci., 1973, 241(105):20-22.

    33. [33]

      TAYLOR-PASHOW K M L, DELLA R J, XIE Z G, TRAN S, LIN W B. J. Am. Chem. Soc., 2009, 131(40):14261-14263.TAYLOR-PASHOW K M L, DELLA R J, XIE Z G, TRAN S, LIN W B. J. Am. Chem. Soc., 2009, 131(40):14261-14263.

    34. [34]

      TU Yong-Hua, CHENG Gui-Fang, LIN Li, ZHENG Jing, WU Zi-Rong, HE Pin-Gang, FANG Yu-Zhi. Chem. J. Chin. Univ., 2006, 27(12):2266-2270. 徒永华, 程圭芳, 林莉, 郑静, 吴自荣, 何品刚, 方禹之. 高等学校化学学报, 2006, 27(12):2266-2270.

    35. [35]

      DENG Yan, MA Yu-Chan, WANG Min, GU Meng-Qiao, CHI Kuan-Neng, HU Rong, YANG Yun-Hui. Chin. J. Anal. Chem., 2020, 48(4):498-506. 邓燕, 马玉婵, 王敏, 谷梦巧, 迟宽能, 胡蓉, 杨云慧. 分析化学, 2020, 48(4):498-506.

    36. [36]

      CHEN Z B, TAN L L, HU L Y, ZHANG Y M, WANG S X, LV F Y. ACS Appl. Mater. Interfaces, 2016, 8(1):102-108.CHEN Z B, TAN L L, HU L Y, ZHANG Y M, WANG S X, LV F Y. ACS Appl. Mater. Interfaces, 2016, 8(1):102-108.

    37. [37]

      YANG J M, DOU B T, YUAN R, XIANG Y. Anal. Chem., 2017, 89(9):5138-5143.YANG J M, DOU B T, YUAN R, XIANG Y. Anal. Chem., 2017, 89(9):5138-5143.

    38. [38]

      ZHANG Q X, FAN G C, CHEN W, LIU Q, ZHANG X, ZHANG X X, LIU Q Y. Biosens. Bioelectron., 2020, 150:111846.ZHANG Q X, FAN G C, CHEN W, LIU Q, ZHANG X, ZHANG X X, LIU Q Y. Biosens. Bioelectron., 2020, 150:111846.

    39. [39]

      LIU Z H, YU T Y, WEI D M, LI Z. Chem. Commun., 2020, 56(13):1976-1979.LIU Z H, YU T Y, WEI D M, LI Z. Chem. Commun., 2020, 56(13):1976-1979.

    40. [40]

      FAN T T, DU Y, YAO Y, WU J, MENG S, LUO J J, ZHANG X, YANG D Z, WANG C Y, QIAN Y, GAO F L. Sens. Actuators, B, 2018, 266:9-18.FAN T T, DU Y, YAO Y, WU J, MENG S, LUO J J, ZHANG X, YANG D Z, WANG C Y, QIAN Y, GAO F L. Sens. Actuators, B, 2018, 266:9-18.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  529
  • HTML全文浏览量:  42
文章相关
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-06-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章