氢键促进对乙酰氨基酚在模拟细胞膜表面的富集

李霞 陈壮壮 范爱华 张丽丽 邵会波

引用本文: 李霞, 陈壮壮, 范爱华, 张丽丽, 邵会波. 氢键促进对乙酰氨基酚在模拟细胞膜表面的富集[J]. 分析化学, 2022, 50(9): 1364-1372. doi: 10.19756/j.issn.0253-3820.221012 shu
Citation:  LI Xia,  CHEN Zhuang-Zhuang,  FAN Ai-Hua,  ZHANG Li-Li,  SHAO Hui-Bo. Accumulation of Paracetamol on Surface of Simulated Cell Membrane Promoted by Hydrogen Bonding[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1364-1372. doi: 10.19756/j.issn.0253-3820.221012 shu

氢键促进对乙酰氨基酚在模拟细胞膜表面的富集

    通讯作者: 邵会波,E-mail:hbs@bit.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21872006)资助。

摘要: 广谱解热镇痛药物扑热息痛(对乙酰氨基酚,APAP)在细胞膜表面借助于氢键促进的富集对其发挥药效作用非常重要。本研究以表面含有氢受体(荷负电的羧酸根)的3-巯基丙酸自组装膜(MPA SAM)作为模拟细胞膜表面的简化模型,通过扫描电化学显微镜(SECM)方法研究了氢键促进的APAP在模拟细胞膜表面的富集作用。实验结果表明,随着Mg2+浓度的增大或pH值的升高,MPA SAM表面羧基解离平衡正向移动,产生了更多的羧酸根(氢受体),促进了APAP在MPA SAM表面的富集。采用SECM成像模式实现了上述富集过程的可视化考察。本研究对理解APAP在生物膜表面借助于氢键的富集过程以及APAP传感器的设计提供了参考。

English


    1. [1]

      ZHANG Tao, ZHANG Meng, HAO Jian-Ping, GAO Yan-Ping, LI Jian-Wei. Chin. J. Pharmaceut., 2021, 52(10):1304-1312. 张涛, 张梦, 郝建平, 高雁平, 李建伟. 中国医药工业杂志, 2021, 52(10):1304-1312.

    2. [2]

      LI J, GAO J, THAI P K, SUN X, MUELLER J F, YUAN Z, JIANG G. Environ. Sci. Technol., 2018, 52(3):1561-1570.LI J, GAO J, THAI P K, SUN X, MUELLER J F, YUAN Z, JIANG G. Environ. Sci. Technol., 2018, 52(3):1561-1570.

    3. [3]

      MEIRELES A, FAIA S, GIAOURIS E, SIMOES M. Biofouling, 2018, 34(10):1150-1160.MEIRELES A, FAIA S, GIAOURIS E, SIMOES M. Biofouling, 2018, 34(10):1150-1160.

    4. [4]

      PAN Y, BREIDT F, KATHARIOU S. Appl. Environ. Microbiol., 2006, 72(12):7711-7717.PAN Y, BREIDT F, KATHARIOU S. Appl. Environ. Microbiol., 2006, 72(12):7711-7717.

    5. [5]

      RAMIN P, BROCK A L, CAUSANILLES A, VALVERDE-PEREZ B, EMKE E, DE VOOGT P, POLESEL F, PLOSZ B G. Environ. Sci. Technol., 2017, 51(18):10572-10584.RAMIN P, BROCK A L, CAUSANILLES A, VALVERDE-PEREZ B, EMKE E, DE VOOGT P, POLESEL F, PLOSZ B G. Environ. Sci. Technol., 2017, 51(18):10572-10584.

    6. [6]

      BAILLIE G S, DOUGLAS L J. Antimicrob. Agents Chemother., 1998, 42(8):2146-2149.BAILLIE G S, DOUGLAS L J. Antimicrob. Agents Chemother., 1998, 42(8):2146-2149.

    7. [7]

      HAKKARAINEN J J, PAJANDER J, LAITINEN R, SUHONEN M, FORSBERG M M. Int. J. Pharm., 2012, 436(1-2):426-443.HAKKARAINEN J J, PAJANDER J, LAITINEN R, SUHONEN M, FORSBERG M M. Int. J. Pharm., 2012, 436(1-2):426-443.

    8. [8]

      ZUR J, PINSKI A, MARCHLEWICZ A, HUPERT-KOCUREK K, WOJCIESZYNSKA D, GUZIK U. Environ. Sci. Pollut. Res., 2018, 25(22):21498-21524.ZUR J, PINSKI A, MARCHLEWICZ A, HUPERT-KOCUREK K, WOJCIESZYNSKA D, GUZIK U. Environ. Sci. Pollut. Res., 2018, 25(22):21498-21524.

    9. [9]

      KAMAZ M, WICKRAMASINGHE S R, ESWARANANDAM S, ZHANG W, JONES S M, WATTS M J, QIAN X. Int. J. Environ. Res. Public Health, 2019, 16(8):1363.KAMAZ M, WICKRAMASINGHE S R, ESWARANANDAM S, ZHANG W, JONES S M, WATTS M J, QIAN X. Int. J. Environ. Res. Public Health, 2019, 16(8):1363.

    10. [10]

      SOLANKI A, BOYER T H. Chemosphere, 2019, 218:818-826.SOLANKI A, BOYER T H. Chemosphere, 2019, 218:818-826.

    11. [11]

      KOLAWOLE A O. Biochem. Biophys. Rep., 2017, 10:198-207.KOLAWOLE A O. Biochem. Biophys. Rep., 2017, 10:198-207.

    12. [12]

      WANG Q, JIANG N, FU B, HUANG F, LIU J. Biomater. Sci., 2019, 7(12):4888-4911.WANG Q, JIANG N, FU B, HUANG F, LIU J. Biomater. Sci., 2019, 7(12):4888-4911.

    13. [13]

      QIN Jian-Fang, SUN Hong, JIANG Xiu-Ping, QIN Ying-Lian, KANG Jing, YANG Hai-Ying. J. Anal. Sci., 2021, 37(5):670-674. 秦建芳, 孙鸿, 姜秀平, 秦英恋, 康婧, 杨海英. 分析科学学报, 2021, 37(5):670-674.

    14. [14]

      SHAO Hui-Bo, SONG Ya-Ru, WANG Ning, TONG Ru-Ting. Chin. J. Anal. Chem., 2003, 31(7):874-879. 邵会波, 宋雅茹, 王宁, 童汝亭. 分析化学, 2003, 31(7):874-879.

    15. [15]

      HUANG X M, ZHENG Q, FANG X T, SHAO H B. J. Elecrrochem. Soc., 2018, 165(5):H240-H246.HUANG X M, ZHENG Q, FANG X T, SHAO H B. J. Elecrrochem. Soc., 2018, 165(5):H240-H246.

    16. [16]

      ISLAM R, LUU H T L, KUSS S. J. Elecrrochem. Soc., 2020, 167(4):045501.ISLAM R, LUU H T L, KUSS S. J. Elecrrochem. Soc., 2020, 167(4):045501.

    17. [17]

      CANIGLIA G, KRANZ C. Anal. Bioanal. Chem., 2020, 412(24):6133-6148.CANIGLIA G, KRANZ C. Anal. Bioanal. Chem., 2020, 412(24):6133-6148.

    18. [18]

      MELONI G N, BERTOTTI M. Electroanalysis, 2017, 29(3):787-793.MELONI G N, BERTOTTI M. Electroanalysis, 2017, 29(3):787-793.

    19. [19]

      YUAN Yuan, SUN Le, LI Yu-Ying, WANG Xiao-Hong, HUANG Zheng-Guo. J. Tianjin Normal Univ. (Nat. Sci. Ed.), 2016, 36(4):39-44. 原媛, 孙乐, 李玉莹, 王晓红, 黄正国. 天津师范大学学报(自然科学版), 2016, 36(4):39-44.

    20. [20]

      PEDROSA V A, LOWINSOHN D, BERTOTTI M. Electroanalysis, 2006, 18(9):931-934.PEDROSA V A, LOWINSOHN D, BERTOTTI M. Electroanalysis, 2006, 18(9):931-934.

    21. [21]

      WANG S F, DU D, ZOU Q C. Talanta, 2002, 57:687-692.WANG S F, DU D, ZOU Q C. Talanta, 2002, 57:687-692.

    22. [22]

      HUANG X M, CHEN J C, FANG X T, YAN C X, SHAO H B. J. Electroanal. Chem., 2019, 837:143-150.HUANG X M, CHEN J C, FANG X T, YAN C X, SHAO H B. J. Electroanal. Chem., 2019, 837:143-150.

    23. [23]

      HUANG X M, CHEN J C, YAN C X, GUO H X, SHAO H B. J. Phys. Chem. C, 2020, 124(16):8876-8884.HUANG X M, CHEN J C, YAN C X, GUO H X, SHAO H B. J. Phys. Chem. C, 2020, 124(16):8876-8884.

    24. [24]

      GERHARDT G, ADAMS R N. Anal. Chem., 1982, 54(14):2618-2620.GERHARDT G, ADAMS R N. Anal. Chem., 1982, 54(14):2618-2620.

    25. [25]

      ZHENG Q, ZHANG J, YANG Y F, WANG X F, DING K J, SHAO H B. J. Elecrrochem. Soc., 2017, 164(2):H97-H103.ZHENG Q, ZHANG J, YANG Y F, WANG X F, DING K J, SHAO H B. J. Elecrrochem. Soc., 2017, 164(2):H97-H103.

    26. [26]

      CHEN J C, HUANG X M, FANG X T, YAN C X, GAO Z M, SHAO H B. J. Electroanal. Chem., 2020, 876:114476.CHEN J C, HUANG X M, FANG X T, YAN C X, GAO Z M, SHAO H B. J. Electroanal. Chem., 2020, 876:114476.

    27. [27]

      ANSON F C. Anal. Chem., 1966, 38(1):54-57.ANSON F C. Anal. Chem., 1966, 38(1):54-57.

    28. [28]

      FANJUL-BOLADO P, LAMAS-ARDISANA P J, HERNANDEZ-SANTOS D, COSTA-GARCIA A. Anal. Chim. Acta, 2009, 638(2):133-138.FANJUL-BOLADO P, LAMAS-ARDISANA P J, HERNANDEZ-SANTOS D, COSTA-GARCIA A. Anal. Chim. Acta, 2009, 638(2):133-138.

    29. [29]

      SUCHACZ B, WESOLOWSKI M. Anal. Methods, 2016, 8(16):3307-3315.SUCHACZ B, WESOLOWSKI M. Anal. Methods, 2016, 8(16):3307-3315.

    30. [30]

      CHEN J C, HUANG X M, LI N, GUO H X, GAO Z M, SHAO H B. J. Phys. Chem. C, 2021, 125(1):410-418.CHEN J C, HUANG X M, LI N, GUO H X, GAO Z M, SHAO H B. J. Phys. Chem. C, 2021, 125(1):410-418.

    31. [31]

      XIA Y R, NI W, WANG X, YU Y G, ZHENG Q, HUANG X M. J. Electroanal. Chem., 2021, 895:115470.XIA Y R, NI W, WANG X, YU Y G, ZHENG Q, HUANG X M. J. Electroanal. Chem., 2021, 895:115470.

    32. [32]

      KACHOOSANGI R T, WILDGOOSE G G, COMPTON R G. Anal. Chim. Acta, 2008, 618(1):54-60.KACHOOSANGI R T, WILDGOOSE G G, COMPTON R G. Anal. Chim. Acta, 2008, 618(1):54-60.

    33. [33]

      LHENRY S, LEROUX Y R, HAPIOT P. Anal. Chem., 2012, 84(17):7518-7524.LHENRY S, LEROUX Y R, HAPIOT P. Anal. Chem., 2012, 84(17):7518-7524.

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  320
  • HTML全文浏览量:  1
文章相关
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章