基于植物酯酶-Cu3(PO4)2杂化纳米花的酶抑制型方法检测敌敌畏残留

曲林姣 王金鑫 姜磊 马洪超 杨丽敏

引用本文: 曲林姣, 王金鑫, 姜磊, 马洪超, 杨丽敏. 基于植物酯酶-Cu3(PO4)2杂化纳米花的酶抑制型方法检测敌敌畏残留[J]. 分析化学, 2021, 49(9): 1506-1514. doi: 10.19756/j.issn.0253-3820.211076 shu
Citation:  QU Lin-Jiao,  WANG Jin-Xin,  JIANG Lei,  MA Hong-Chao,  YANG Li-Min. Detection of Dichlorvos Residue by Enzyme Inhibition Method Based on Plant Esterase-Cu3(PO4)2 Hybrid Nanoflowers[J]. Chinese Journal of Analytical Chemistry, 2021, 49(9): 1506-1514. doi: 10.19756/j.issn.0253-3820.211076 shu

基于植物酯酶-Cu3(PO4)2杂化纳米花的酶抑制型方法检测敌敌畏残留

    通讯作者: 杨丽敏,E-mail:yanglimin@upc.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.31871878)和中国石油大学(华东)大学生创新创业训练计划项目(No.202003022)资助。

摘要: 制备了植物酯酶-Cu3(PO42杂化纳米花,实现了植物酯酶的固定,保持了其水解酶活性,而且引入的磷酸铜骨架不仅具有支撑作用,还具有过氧化物酶模拟酶活性。与游离酶不同,杂化纳米花具有较高的稳定性,在储存30天后,其水解酶活性和过氧化物酶模拟酶活性都维持在80%以上;同时,分层纳米结构具有较大的比表面积,有利于酶与底物之间的反应。基于此杂化纳米花的双酶活性,将其运用于1-萘酚偶联双酶反应的酶抑制型检测方法,实现了有机磷农药敌敌畏的灵敏检测。本方法对敌敌畏的检出限(LOD)为0.26 pmol/L,实际蔬菜水果样品中敌敌畏的回收率为96.8%~107.4%。

English


    1. [1]

      FENG Xu-Dong, LYU Bo, LI Chun. J. Chem. Ind. Eng., 2016, 67(1):277-284. 冯旭东, 吕波, 李春. 化工学报, 2016, 67(1):277-284

    2. [2]

      RODRIGUES R C, ORTIZ C, BERENGUER-MURCIA A, TORRES R, FERNANDEZ-LAFUENTE R. Chem. Soc. Rev., 2013, 42(15):6290-6307.RODRIGUES R C, ORTIZ C, BERENGUER-MURCIA A, TORRES R, FERNANDEZ-LAFUENTE R. Chem. Soc. Rev., 2013, 42(15):6290-6307.

    3. [3]

      TRAN D N, BALKUS K J. ACS Catal., 2015, 1(8):956-968.TRAN D N, BALKUS K J. ACS Catal., 2015, 1(8):956-968.

    4. [4]

      ZHAO M, ZHANG X, DENG C. Chem. Commun., 2015, 51(38):8116-8119.ZHAO M, ZHANG X, DENG C. Chem. Commun., 2015, 51(38):8116-8119.

    5. [5]

      TANG Zhen-Ping, LIN Chun-Xiang, ZHANG Xin-Ying, WU Yan. Environ. Sci. Manage., 2016, 41(10):78-82. 汤真平, 林春香, 张新颖, 伍雁. 环境科学与管理, 2016, 41(10):78-82.

    6. [6]

      ZOU B, CHU Y, XIA J, CHEN X, HUO S. Appl. Biochem. Biotechnol., 2018, 185(3):606-618.ZOU B, CHU Y, XIA J, CHEN X, HUO S. Appl. Biochem. Biotechnol., 2018, 185(3):606-618.

    7. [7]

      SUN J, YANG L, JIANG M, SHI Y, XU B, MA H. J. Chromatogr. B, 2017, 1054:57-63.SUN J, YANG L, JIANG M, SHI Y, XU B, MA H. J. Chromatogr. B, 2017, 1054:57-63.

    8. [8]

      ANSARI S A, HUSAIN Q. Biotechnol. Adv., 2012, 30(3):512-523.ANSARI S A, HUSAIN Q. Biotechnol. Adv., 2012, 30(3):512-523.

    9. [9]

      REN W, FEI X, TIAN J, LI Y, JING M, FANG H, XU L, WANG Y. New J. Chem., 2018, 42:13471-13478.REN W, FEI X, TIAN J, LI Y, JING M, FANG H, XU L, WANG Y. New J. Chem., 2018, 42:13471-13478.

    10. [10]

      ZHENG L, XIE X N, WANG Z, ZHANG Y X, WANG L, CUI X Y, HUANG H, ZHUANG H. Green Chem. Lett. Rev., 2018, 11(2):55-61.ZHENG L, XIE X N, WANG Z, ZHANG Y X, WANG L, CUI X Y, HUANG H, ZHUANG H. Green Chem. Lett. Rev., 2018, 11(2):55-61.

    11. [11]

      GE J, LEI J, ZARE R N. Nat. Nanotechnol., 2012, 7(7):428-432.GE J, LEI J, ZARE R N. Nat. Nanotechnol., 2012, 7(7):428-432.

    12. [12]

      WU P, LUO F, LU Z, ZHAN Z, ZHANG G. Front. Bioeng. Biotechnol., 2020, 8:280.WU P, LUO F, LU Z, ZHAN Z, ZHANG G. Front. Bioeng. Biotechnol., 2020, 8:280.

    13. [13]

      LI Y, WU H, SU Z. Coord. Chem. Rev., 2020, 416:213342.LI Y, WU H, SU Z. Coord. Chem. Rev., 2020, 416:213342.

    14. [14]

      SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 4:413-422.SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 4:413-422.

    15. [15]

      LIN Z, XIAO Y, YIN Y, HU W, LIU W, YANG H. ACS Appl. Mater. Interface, 2014, 6(13):10775-10782.LIN Z, XIAO Y, YIN Y, HU W, LIU W, YANG H. ACS Appl. Mater. Interface, 2014, 6(13):10775-10782.

    16. [16]

      CHUNG M, JANG Y J, KIM M I. J. Nanosci. Nanotechnol., 2018, 18(9):6555-6561.CHUNG M, JANG Y J, KIM M I. J. Nanosci. Nanotechnol., 2018, 18(9):6555-6561.

    17. [17]

      SUN J, GE J, LIU W, LAN M, ZHANG H, WANG P, WANG Y, NIU Z. Nanoscale, 2014, 6(1):255-262.SUN J, GE J, LIU W, LAN M, ZHANG H, WANG P, WANG Y, NIU Z. Nanoscale, 2014, 6(1):255-262.

    18. [18]

      RAJANGAM B, DANIEL D K, KRASTANOV A I. Eng. Life Sci., 2018, 18:4-19.RAJANGAM B, DANIEL D K, KRASTANOV A I. Eng. Life Sci., 2018, 18:4-19.

    19. [19]

      CAO J, WANG M, YU H, SHE Y, CAO Z, YE J, WANG J, LAO S. J. Agric. Food Chem., 2020, 68(28):7298-7315.CAO J, WANG M, YU H, SHE Y, CAO Z, YE J, WANG J, LAO S. J. Agric. Food Chem., 2020, 68(28):7298-7315.

    20. [20]

      YANG L, WANG J, QU L, LIU Z, JIANG L. Analyst, 2020, 145(11):3958-3966.YANG L, WANG J, QU L, LIU Z, JIANG L. Analyst, 2020, 145(11):3958-3966.

    21. [21]

      JOKANOVIC M. Toxicology, 2018, 410:125-131.JOKANOVIC M. Toxicology, 2018, 410:125-131.

    22. [22]

      WANG Fang-Huan, REN Cui-Juan, MA Hui, LI Ping, HAO Jun-Hu, CHEN Lin, SUN Min. Chin. J. Chromatogr., 2019, 37(10):1042-1047. 王芳焕, 任翠娟, 马辉, 李萍, 郝俊虎, 陈林, 孙敏. 色谱, 2019, 37(10):1042-1047.

    23. [23]

      CHEN C, ZHAO D, JIANG Y, NI P, ZHANG C, WANG B, YANG F, LU Y, SUN J. Anal. Chem., 2019, 91:15017-15024.CHEN C, ZHAO D, JIANG Y, NI P, ZHANG C, WANG B, YANG F, LU Y, SUN J. Anal. Chem., 2019, 91:15017-15024.

    24. [24]

      ZHAO Dan, LI Na, XU Yan-Jie, HUANG Jing-Jing, CHEN Chuan-Xia. Chin. J. Anal. Chem., 2020, 48(7):889-895. 赵丹, 李娜, 许艳杰, 黄晶晶, 陈传霞. 分析化学, 2020, 48(7):889-895.

    25. [25]

      BHATT P, ZHOU X, HUANG Y, ZHANG W, CHEN S. J. Hazard. Mater., 2021, 411:125026.BHATT P, ZHOU X, HUANG Y, ZHANG W, CHEN S. J. Hazard. Mater., 2021, 411:125026.

    26. [26]

      MANGAS I, ESTEVEZ J, VILANOVA E. Toxicology, 2017, 376:30-43.MANGAS I, ESTEVEZ J, VILANOVA E. Toxicology, 2017, 376:30-43.

    27. [27]

      YANG L, HUO D, HOU C, HE K, LV F, FA H, LUO X. Process Biochem., 2010, 45(10):1664-1671.YANG L, HUO D, HOU C, HE K, LV F, FA H, LUO X. Process Biochem., 2010, 45(10):1664-1671.

    28. [28]

      GUO J, WANG Y, ZHAO M. Sens. Actautors, B, 2019, 284:45-54.GUO J, WANG Y, ZHAO M. Sens. Actautors, B, 2019, 284:45-54.

    29. [29]

      HE G, HU W, LI C. Colloids Surf. B, 2015, 135:613-618.HE G, HU W, LI C. Colloids Surf. B, 2015, 135:613-618.

    30. [30]

      KONG D, JIN R, ZHAO X, LI H, YAN X, LIU F, SUN P, GAOY, LIANG X, LIN Y, LU G. ACS Appl. Mater. Interfaces, 2019, 11(12):11857-11864.KONG D, JIN R, ZHAO X, LI H, YAN X, LIU F, SUN P, GAOY, LIANG X, LIN Y, LU G. ACS Appl. Mater. Interfaces, 2019, 11(12):11857-11864.

    31. [31]

      TRIVEDI V D, JANGIR P K, SHARMA R, PHALE P S. Sci. Rep., 2016, 6:38430.TRIVEDI V D, JANGIR P K, SHARMA R, PHALE P S. Sci. Rep., 2016, 6:38430.

    32. [32]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2:577-583.GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2:577-583.

    33. [33]

      CHU S, HUANG W, SHEN F, LI T, LI S, XU W, LV C, LUO Q, LIU J. Nanoscale, 2020, 12:5829-5833.CHU S, HUANG W, SHEN F, LI T, LI S, XU W, LV C, LUO Q, LIU J. Nanoscale, 2020, 12:5829-5833.

    34. [34]

      HAN T, WANG G. J. Mater. Chem. B, 2019, 7(16):2613-2618.HAN T, WANG G. J. Mater. Chem. B, 2019, 7(16):2613-2618.

    35. [35]

      PIMSEN R, KHUMSRI A, WACHARASINDHU S, TUMCHARERN G, SUKWATTANASINITTET W. Biosens. Bioelectron., 2014, 62:8-12.PIMSEN R, KHUMSRI A, WACHARASINDHU S, TUMCHARERN G, SUKWATTANASINITTET W. Biosens. Bioelectron., 2014, 62:8-12.

    36. [36]

      HUANG L, SUN D, PU H, WEI Q, LUO L, WANG J. Sens. Actuators, B, 2019, 290:573-580.HUANG L, SUN D, PU H, WEI Q, LUO L, WANG J. Sens. Actuators, B, 2019, 290:573-580.

    37. [37]

      ZHANG S, XUE S, DENG J, ZHANG M, SHI G, ZHOU T. Biosens. Bioelectron., 2016, 85:457-463.ZHANG S, XUE S, DENG J, ZHANG M, SHI G, ZHOU T. Biosens. Bioelectron., 2016, 85:457-463.

    38. [38]

      XIE X, ZHOU B, ZHANG Y, ZHAO G, ZHAO B. Chem. Phys. Lett., 2021, 767:138355.XIE X, ZHOU B, ZHANG Y, ZHAO G, ZHAO B. Chem. Phys. Lett., 2021, 767:138355.

  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  818
  • HTML全文浏览量:  154
文章相关
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章