一种超灵敏检测镉离子的核酸适配体电化学传感器

袁敏 钱世权 曹慧 徐斐 叶泰 于劲松 郭文 吴嘉颖 阿提坎·吾斯曼

引用本文: 袁敏, 钱世权, 曹慧, 徐斐, 叶泰, 于劲松, 郭文, 吴嘉颖, 阿提坎·吾斯曼. 一种超灵敏检测镉离子的核酸适配体电化学传感器[J]. 分析化学, 2020, 48(12): 1701-1708. doi: 10.19756/j.issn.0253-3820.201072 shu
Citation:  YUAN Min,  QIAN Shi-Quan,  CAO Hui,  XU Fei,  YE Tai,  YU Jin-Song,  GUO Wen,  WU Jia-Ying,  A Ti-kan·Wu-siman. An Ultra-sensitive Electrochemical Aptasensor for Detection of Cd2+[J]. Chinese Journal of Analytical Chemistry, 2020, 48(12): 1701-1708. doi: 10.19756/j.issn.0253-3820.201072 shu

一种超灵敏检测镉离子的核酸适配体电化学传感器

    通讯作者: 徐斐, xufei8135@126.com
  • 基金项目:

    本文系国家自然科学基金项目(Nos.31671934,61501295)、科技部"十三五"计划项目(No.2017YFC1600603)和上海市科委重点攻关项目(Nos.18391901200,17391901500)资助

摘要: 设计了一种基于核酸适配体检测镉离子(Cd2+)的电化学生物传感器,将适配体互补链(CDNA)通过AuS键自组装于金电极表面,并与适配体杂交结合形成双链DNA。由于适配体对Cd2+有特异性结合能力,加入Cd2+后,与互补链竞争结合适配体,使修饰二茂铁基团的适配体从金电极表面脱落,二茂铁的电化学信号显著减小。采用方波伏安法(SWV)进行检测,本传感器对Cd2+的线性检测范围为1.0 nmol/L~10.0 μmol/L,检出限为65.1 pmol/L,线性方程为ΔI=0.2872+0.2327lgCR2=0.9972),10 s内即可完成检测。实际江水样品中Cd2+的检测结果与石墨炉原子吸收光谱法的检测结果一致,加标回收率为97.1%~99.5%。本方法灵敏度高、检测速度快、特异性强,在镉环境污染监测方面具有良好的应用前景。

English


    1. [1]

      Gu Q, Chen Z P, Yu X L, Cui W T, Pan J C, Zhao G, Xu S, Wang R, Shen W B. Plant Sci.,2017,261:28-37

    2. [2]

      LI Na, LI Xi, CHU Mei, CHENG Dan, ZHOU Jian, CHEN Qi, LI Yu-Gang, DONG Yu-Lin. Mater. Rep.,2017,31(11):115-120 李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林.材料导报,2017,31(11):115-120

    3. [3]

      Yuan Z, Peng M, He Y, Yeung E S. Chem. Commun.,2011,47(43):11981-11983

    4. [4]

      Mameli M, Aragoni M C, Arca M, Caltagirone C, Demartin F, Farruggia G, Filippo G D, Devillanova F A, Garau A, Isaia F, Lippolis V, Murgia S, Prodi L, Pintus A, Zaccheroni N. Chem. -Euro J.,2010,16(3):919-930

    5. [5]

      Feng Y. Environ. Develop.,2013,29(3):87-93

    6. [6]

      GB5749-2006. Standards for Drinking Water Quality. National Standards of the People's Republic of China 生活饮用水卫生标准.中华人民共和国国家标准. GB5749-2006

    7. [7]

      Li Y P, Wang S L, Prete D, Xue S Y, Nan Z R, Zang F, Qian Z. Sci. Total Environ.,2017,595:344-351

    8. [8]

      Cao H B, Gao F Y, Xia B, Zhang M M, Liao Y L, Yang Z, Hu G L, Zhang C Y. Ecotox. Environ. Safe.,2016,125:93-101

    9. [9]

      David M, Guillermo G, Luis G, Juan M J. Food Compos. Anal.,2018,67:178-183

    10. [10]

      HUANG Chu-Chu, LI Qing, ZHANG Guo-Xia, WANG Zheng. Chinese J. Anal. Chem.,2016,44(7):1047-1052 黄楚楚, 李青, 张国霞, 汪正.分析化学,2016,44(7):1047-1052

    11. [11]

      David A, Ryan E, Avery H, Wu F C, Dulasiri A. Microchem. J.,2017,135:129-139

    12. [12]

      Luo H, Wang X Y, Dai R, Liu Y, Jiang X, Xiong X L, Huang K. Microchem. J.,2017,133:518-523

    13. [13]

      Wu S W, Li G D, Wang Y, Li N, Xin S G, Hou L H, Zhang S Q. Appl. Mechan. Mater.,2015,733:299-302

    14. [14]

      Rizwan A Z, Mustafa T, Muhammad Y K. J. Mol. Liquids,2018,259:220-226

    15. [15]

      Wang Q, Yang Z. Environ. Pollut.,2016,218:358-365

    16. [16]

      Wang H, Wen F, Chen Y, Sun T, Meng Y, Zhang Y. Biosens. Bioelectron.,2016,85:692-697

    17. [17]

      Tuerk C, Gold L. Science,1990,249(4968):505-510

    18. [18]

      Yuan M, Song Z, Fei J, Wang X, Xu F, Cao H, Jinsong Yu. Microchim. Acta, 2017,84:1397-1403

    19. [19]

      Yuan M, Zhang Q Q, Song Z, Ye T, Yu J, Cao H, Xu F. Microchim. Acta, 2019,186:268

    20. [20]

      Huang Z J, Chen J M, Luo Z W, Wang X Q, Duan Y X. Anal. Chem.,2019,91(7):4806-4813

    21. [21]

      Wu Y, Zhan S, Wang L, Zhou P. Analyst, 2014,139(6):1550

    22. [22]

      Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R. Talanta,2016,154:498-503

    23. [23]

      Zhou B, Yang X Y, Wang Y S, Yi J C, Zeng Z, Zhang H, Zhang H, Chen Y T, Hu X J, Suo Q L. Microchem. J.,2019,144:377-382

    24. [24]

      Hammond J L, Formisano N, Estrela P, Carrara S,Tkac J. Essays Biochem.,2016,60(1):69-80

    25. [25]

      Wang L, Wang C, Hao L. Analyst,2018,143(13):3202-3208

    26. [26]

      Gobelli D, Correa N M, Barroso M F, Moyano F, Molina P G. Electroanalysis,2015,27(8):1883-1891

    27. [27]

      Shui B Q, Tao D, Cheng J, Mei Y, Guo Z Z. Analyst,2018,143(15):3549-3554

    28. [28]

      Liu X Y, Deng K Q, Wang H, Li C X, Huang H W. Microchim. Acta,2019,186(6):347

    29. [29]

      Xiao Q, Feng J R, Feng M M, Li J W, Huang S. Microchim. Acta,2019,186(7):478

    30. [30]

      Yang Y B, Yang X D, Yang Y J, Yuan Q. Carbon,2017, 129:380-395

    31. [31]

      XIAO Qing, CHEN Lin, LI Wen-Feng, YANG Li-Qin, CAO Zhong, YU Xin-Yao, LONG Shu, HE Jing-Lin, XIAO Zhong-Liang. Chinese J. Anal. Chem.,2018,46(12):45-53 肖情, 陈琳, 李文锋, 杨丽琴, 曹忠, 于鑫垚, 龙姝, 何婧琳, 肖忠良.分析化学,2018,46(12):45-53

    32. [32]

      Lotfi Z Z H R, Rodriguez Y M, Lai R Y. J. Electroanal. Chem.,2017,803:89-94

    33. [33]

      Zhou B, Yang X Y, Wang Y S, Yi J C, Zeng Z, Zhang H. Microchem. J.,2019,144:377-382

    34. [34]

      CAO Ya, KANG Ming-Yang, CHEN Hong, TANG Ying-Ying, FENG Chang, ZHAO Jing, LI Gen-Xi. Chinese J. Anal. Chem.,2017,45(12):1903-1908 曹亚, 康明扬, 陈红, 唐盈盈, 冯畅, 赵婧, 李根喜.分析化学,2017,45(12):1903-1908

    35. [35]

      Gonzalez J Q, Sequí J A. J. Electroanal. Chem.,2019,854:113549

    36. [36]

      Hamid R, Lotfi Zadeh Zhad, Yamil M, Rodríguez Torres, Rebecca Y Lai. J. Electroanal. Chem.,2017,803:89-94

    37. [37]

      Zhu Y F, Wang Y S, Zhou B, Yu J H, Peng L L, Huang Y Q, Li X J, Chen S H, Tang X, Wang X F. Anal. Bioanal. Chem.,2017, 409:4951-4958

    38. [38]

      Gan Y, Liang T, Hu Q W, Zhong L J, Wang X Y, Wan H, Wang P. Talanta,2020,208:120-231

    39. [39]

      Roushani M, Valipour A, Saedi Z. Sens. Actuators B,2016,233:419-425

    40. [40]

      GB8538-2016. Detection Method of Drinking Water. National Standards of the People's Republic of China 饮用天然矿泉水检验方法.中华人民共和国国家标准. GB8538-2016

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  1005
  • HTML全文浏览量:  151
文章相关
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-08-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章