Structure and Potential Application of Konjac Glucomannan Nano Microfibril Aerogel

CHEN Han MU Ruo-Jun PANG Jie TAN Xiao-Dan WANG Min Chiang Wei-Yin

Citation:  CHEN Han, MU Ruo-Jun, PANG Jie, TAN Xiao-Dan, WANG Min, Chiang Wei-Yin. Structure and Potential Application of Konjac Glucomannan Nano Microfibril Aerogel[J]. Chinese Journal of Structural Chemistry, 2016, 35(1): 166-168. doi: 10.14102/j.cnki.0254-5861.2011-1077 shu

Structure and Potential Application of Konjac Glucomannan Nano Microfibril Aerogel

  • 基金项目:

    research in Fujian Province (2013N5003) (2013N5003)

摘要: An ultra-light and high porosity nano microfibril aerogel was prepared from konjac glucomannan (KGM) by the electrospinning and freeze-drying. The structure of aerogel was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) while the density and compressive strength of the samples were studied separately. Results reveal that porous network structure of the KGM nano microfibril aerogel is constructed by intermolecular hydrogen bonds in random and interpenetrate way. The nano microfibril structure presents in the KGM aerogel, which is an important reason of its high density and compressive strength. There is a potential application for this unique nano microfibril aerogel in the absorption of biodegradation bacteria to solve problems in marine oil spill pollution.

English

  • 
    1. [1]

      (1) Materials: energy stored inside an aerogel. Nature 2015, 522(7555), 130.(1) Materials: energy stored inside an aerogel. Nature 2015, 522(7555), 130.

    2. [2]

      (2) Biomimetics: steel strong, air light. Nature 2009, 458(7237), 389.(2) Biomimetics: steel strong, air light. Nature 2009, 458(7237), 389.

    3. [3]

      (3) Pollanen, J.; Li, J. I. A.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.; Sauls, J. A. New chiral phases of superfluid 3He stabilized by anisotropic silica aerogel. Nature Phy. 2012, 8, 317-320.(3) Pollanen, J.; Li, J. I. A.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.; Sauls, J. A. New chiral phases of superfluid 3He stabilized by anisotropic silica aerogel. Nature Phy. 2012, 8, 317-320.

    4. [4]

      (4) Robitzer, M.; Tourrette, A.; Horga, R.; Valentin, R.; Boissière, M.; Devoisselle, J. M.; Renzo, D. F.; Quignard, F. Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carb. Poly. 2011, 85, 44-53.(4) Robitzer, M.; Tourrette, A.; Horga, R.; Valentin, R.; Boissière, M.; Devoisselle, J. M.; Renzo, D. F.; Quignard, F. Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carb. Poly. 2011, 85, 44-53.

    5. [5]

      (5) Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; CHIANG Wei-Yin. Influence of topology structure on the stability of Konjac glucomannan nano gel microfibril. Chin. J. Struct.chem. 2015, 34, 1939-1941.(5) Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; CHIANG Wei-Yin. Influence of topology structure on the stability of Konjac glucomannan nano gel microfibril. Chin. J. Struct.chem. 2015, 34, 1939-1941.

    6. [6]

      (6) Kyu, H. K.; Youngseok, O.; Islam, M. F. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Nano 2012, 7, 562-566.(6) Kyu, H. K.; Youngseok, O.; Islam, M. F. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Nano 2012, 7, 562-566.

    7. [7]

      (7) Wang, L. X.; Jiang, W.; Lin, C. P.; Zhong, Q. X.; Pang, J. Studies on the hydrogen bonding network structures of amino-konjacglucomannan-zinc chelate. Chin. J. Struct. Chem. 2014, 33, 171-178.(7) Wang, L. X.; Jiang, W.; Lin, C. P.; Zhong, Q. X.; Pang, J. Studies on the hydrogen bonding network structures of amino-konjacglucomannan-zinc chelate. Chin. J. Struct. Chem. 2014, 33, 171-178.

    8. [8]

      (8) Mashallah, R.; Abtin, E. A.; Mohammad, M. M. R.; Ahmad, F. I.; Takeshi, M. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. in Poly. Sci. 2014, 39, 817-861.(8) Mashallah, R.; Abtin, E. A.; Mohammad, M. M. R.; Ahmad, F. I.; Takeshi, M. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. in Poly. Sci. 2014, 39, 817-861.

    9. [9]

      (9) Marcus, A. W.; Swanee, J. S.; Matthew, D. M.; Jeremy, L.; Art, J. N.; Leta, Y. W.; Alex, E. G.; Theodore, F. B.; Christine, A. O. Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano. 2015, 9, 4698-4705.(9) Marcus, A. W.; Swanee, J. S.; Matthew, D. M.; Jeremy, L.; Art, J. N.; Leta, Y. W.; Alex, E. G.; Theodore, F. B.; Christine, A. O. Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano. 2015, 9, 4698-4705.

    10. [10]

      (10) Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.(10) Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575-1578.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  2824
  • HTML全文浏览量:  83
文章相关
  • 收稿日期:  2015-12-02
  • 网络出版日期:  2016-01-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章