Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound

MEI Zheng LI Xiao-Hong CUI Hong-Ling WANG Hui-Xian ZHANG Rui-Zhou

Citation:  MEI Zheng, LI Xiao-Hong, CUI Hong-Ling, WANG Hui-Xian, ZHANG Rui-Zhou. Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound[J]. Chinese Journal of Structural Chemistry, 2016, 35(1): 16-24. doi: 10.14102/j.cnki.0254-5861.2011-0602 shu

Theoretical Studies on the Structure and Detonation Properties of a Furazan-based Energetic Macrocycle Compound

  • 基金项目:

    This project was supported by the National Natural Science Foundation of China (No. U1304111) (No. U1304111)

    the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 14HASTIT039)  (No. 14HASTIT039)

    Technology (2015XTD001) (2015XTD001)

摘要: Based on the full optimized molecular geometric structure at 6-311++G** level, the density (ρ), detonation velocity (D), and detonation pressure (P) for a new furazan-based energetic macrocycle compound, hexakis[1,2,5]oxadi-azole[3,4-c:3',4'-e;3'',4''-g:3''',4'''-k:3'''',4''''-m:3''''', 4'''''-o][1,2,9,10]-tetraazacyclohexadecine, were investigated to verify its capacity as high energy density material (HEDM). The infrared spectrum was also predicted. The heat of formation (HOF) was calculated using designed isodesmic reaction. The calculation on the bond dissociation energies (BDEs) was done and the pyrolysis mechanism of the compound was studied. The result shows that the N3-O1 bond in the ring may be the weakest one and the ring cleavage is possible to happen in thermal decomposition. The condensed phase HOF and the crystal density were also calculated for the title compound. The detonation data show that it can be considered as a potential HEDM. These results would provide basic information for the molecular design of novel high energy materials.

English

  • 
    1. [1]

      (1) Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience: New York 1984, p120-122.(1) Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience: New York 1984, p120-122.

    2. [2]

      (2) Sikder, A. K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1-15.(2) Sikder, A. K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1-15.

    3. [3]

      (3) Hiskey, M.; Goldman, N. High-nitrogen energetic materials derived from azotetrazolate. Energ. Mater. 1998, 16, 119-127.(3) Hiskey, M.; Goldman, N. High-nitrogen energetic materials derived from azotetrazolate. Energ. Mater. 1998, 16, 119-127.

    4. [4]

      (4) Zelenin, A. K.; Trudell, M. L. Synthesis and structure of dinitroazofurazan. J. Heterocycl. Chem. 1998, 35, 151-155.(4) Zelenin, A. K.; Trudell, M. L. Synthesis and structure of dinitroazofurazan. J. Heterocycl. Chem. 1998, 35, 151-155.

    5. [5]

      (5) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J. Studies of novel heterocyclic insensitive fligh explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellant Explos. Pyrotech. 2004, 29, 81-92.(5) Millar, R. W.; Philbin, S. P.; Claridge, R. P.; Hamid, J. Studies of novel heterocyclic insensitive fligh explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellant Explos. Pyrotech. 2004, 29, 81-92.

    6. [6]

      (6) Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta 2002, 384, 229-243.(6) Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta 2002, 384, 229-243.

    7. [7]

      (7) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cen. Eur. J. Energet. Mater. 2011, 8, 39-52.(7) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cen. Eur. J. Energet. Mater. 2011, 8, 39-52.

    8. [8]

      (8) Nielsen, A. T. Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials. Academic Press: San Diego 1991, p253-254.(8) Nielsen, A. T. Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials. Academic Press: San Diego 1991, p253-254.

    9. [9]

      (9) David, E.; Chavez, D. A.; Parrish, P. L. The synthesis and characterization of a new furazan heterocyclic system. Synlett. 2012, 23, 2126-2128.(9) David, E.; Chavez, D. A.; Parrish, P. L. The synthesis and characterization of a new furazan heterocyclic system. Synlett. 2012, 23, 2126-2128.

    10. [10]

      (10) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.(10) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.

    11. [11]

      (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 02. (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B. 02.

    12. [12]

      (12) Li, X. H.; Cheng, Q. D.; Zhang, X. Z. Density functional theory study of several nitrotriazole derivatives. J. Energet. Mater. 2010, 28, 251-272.(12) Li, X. H.; Cheng, Q. D.; Zhang, X. Z. Density functional theory study of several nitrotriazole derivatives. J. Energet. Mater. 2010, 28, 251-272.

    13. [13]

      (13) Kamlet, M. J.; Jacobs, S. J. A simple method for calculating detonation properties of C,H,N,O explosives. J. Chem. Phys. 1968, 48, 23-35.(13) Kamlet, M. J.; Jacobs, S. J. A simple method for calculating detonation properties of C,H,N,O explosives. J. Chem. Phys. 1968, 48, 23-35.

    14. [14]

      (14) Atkins, P. W. Physical Chemistry. Oxford University Press: Oxford 1982, p247-249.(14) Atkins, P. W. Physical Chemistry. Oxford University Press: Oxford 1982, p247-249.

    15. [15]

      (15) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO,(15) Politzer, P.; Pat, L.; Murray, J. S. Computational characterization of two di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO,

    16. [16]

      as potential energetic compounds. Cen. Eur. J. Energet. Mater. 2013, 10, 37-52.as potential energetic compounds. Cen. Eur. J. Energet. Mater. 2013, 10, 37-52.

    17. [17]

      (16) Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum chemical calculations. J. Phys. Chem. A 2006, 10, 1005-1013.(16) Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum chemical calculations. J. Phys. Chem. A 2006, 10, 1005-1013.

    18. [18]

      (17) Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592.(17) Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592.

    19. [19]

      (18) Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.(18) Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141, 280-288.

    20. [20]

      (19) Frank, H. A.; Olga, K.; David, G. W. Table of bond lengths determined by X-ray and neutron diffraction. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.(19) Frank, H. A.; Olga, K.; David, G. W. Table of bond lengths determined by X-ray and neutron diffraction. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.

    21. [21]

      (20) Batog, L. V.; Konstantinova, L. S.; Eman, V. E.; Sukhanov, M. S.; Batsanov, A. S.; Struchkov, Y. T.; Lebedev, O. V.; Khmel'nitskii, L. I. Novel method for synthesis of 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeka-1,3,5,7,9,11,13,15-octaene and its crystal structure. Chem. Heterocy. Comp. 1996, 32, 352-354.(20) Batog, L. V.; Konstantinova, L. S.; Eman, V. E.; Sukhanov, M. S.; Batsanov, A. S.; Struchkov, Y. T.; Lebedev, O. V.; Khmel'nitskii, L. I. Novel method for synthesis of 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeka-1,3,5,7,9,11,13,15-octaene and its crystal structure. Chem. Heterocy. Comp. 1996, 32, 352-354.

    22. [22]

      (21) Lide, D. R. Handbook of Chemistry and Physics. 84th ed. CRC Press LLC: Boca Raton 2004, 108-121.(21) Lide, D. R. Handbook of Chemistry and Physics. 84th ed. CRC Press LLC: Boca Raton 2004, 108-121.

    23. [23]

      (22) Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589-607.(22) Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589-607.

    24. [24]

      (23) Hobbs, M. L.; Baer, M. R. Calibration of the BKW-EOS with a large product species data base and measured C-J properties, in: proceedings of the 10th symposium (international) on detonation, ONR 33395-12, Boston, MA, 12-16 July. 1993, p409-418.(23) Hobbs, M. L.; Baer, M. R. Calibration of the BKW-EOS with a large product species data base and measured C-J properties, in: proceedings of the 10th symposium (international) on detonation, ONR 33395-12, Boston, MA, 12-16 July. 1993, p409-418.

    25. [25]

      (24) Xiao, H. M.; Chen, Z. X. The Modern Theory for Tetrazole Chemistry. Science Press: Beijing 2000, p153-154.(24) Xiao, H. M.; Chen, Z. X. The Modern Theory for Tetrazole Chemistry. Science Press: Beijing 2000, p153-154.

    26. [26]

      (25) Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J. Phys. Chem. A 2010, 114, 603-612.(25) Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J. Phys. Chem. A 2010, 114, 603-612.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  2544
  • HTML全文浏览量:  21
文章相关
  • 收稿日期:  2015-10-09
  • 网络出版日期:  2015-12-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章