基于亲水作用色谱和反相色谱四极杆-飞行时间质谱技术的水稻叶片代谢轮廓分析

秦美玲 高欢欢 柴爽爽 何巧 张涵彤 马有宁

引用本文: 秦美玲,  高欢欢,  柴爽爽,  何巧,  张涵彤,  马有宁. 基于亲水作用色谱和反相色谱四极杆-飞行时间质谱技术的水稻叶片代谢轮廓分析[J]. 分析化学, 2018, 46(4): 479-485. doi: 10.11895/j.issn.0253-3820.171370 shu
Citation:  QIN Mei-Ling,  GAO Huan-Huan,  CHAI Shuang-Shuang,  HE Qiao,  ZHANG Han-Tong,  MA You-Ning. Metabolic Profiling Analysis of Rice Leaf Based on Hydrophilic Interaction Chromatography Combined with Reversed Phase Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 479-485. doi: 10.11895/j.issn.0253-3820.171370 shu

基于亲水作用色谱和反相色谱四极杆-飞行时间质谱技术的水稻叶片代谢轮廓分析

  • 基金项目:

    本文系国家水稻产业技术体系(No.CARS-01-47)、浙江省分析测试科技计划项目(No.2018C37002)、中国水稻研究所中央级公益性科研院所基本科研业务费专项(No.2017RG006-2)和浙江省科技专项重大农业项目(No.2014C02002-1)资助

摘要: 采用四极杆-飞行时间液相色谱-质谱联用(Q-TOF LC/MS)方法,比较不同提取方法对水稻叶片中代谢物提取结果的影响,建立了HSS T3和XBridge Amide相结合的水稻叶片代谢轮廓分析方法。以检出峰数目、初步鉴定的代谢物数量、种类以及代谢途径为指标,探讨了甲醇-氯仿-水,甲醇-氯仿-氨水,甲醇-甲基叔丁基醚-水3种提取方法和不同色谱系统对水稻叶片中代谢物提取及分离的效果。结果表明,甲醇-氯仿-水对水稻叶片中代谢物的检出覆盖率最高,提取到的独有代谢物最多,分别为苯甲酸、木樨草素、α-亚麻酸、乌头酸、赤霉素A12醛、异牧荆素、L-谷氨酸;HSS T3和XBridge Amide色谱柱同时应用实现了对极性不同的代谢物较全面的检测,初步鉴定到16种有机酸、17种核苷酸、21种氨基酸、66种脂肪酸、11种磷脂、7种鞘脂,XBridge Amide在分离检测磷脂和鞘脂类化合物方面具有明显优势;鉴定到的代谢物所涉及的代谢途径为嘌呤代谢、嘧啶代谢、三羧酸循环、精氨酸代谢、脂肪酸代谢、磷脂代谢、鞘脂代谢、苯丙氨酸代谢以及维生素B2的合成。两种色谱柱初步鉴定到的代谢物和涉及的代谢途径均存在一定的互补性,本方法可望用于水稻代谢表型的差异性研究。

English

    1. [1]

      Eran P, David R G. Trends. Plant. Sci.,2000,5(10):439-445

    2. [2]

      Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie A R. Nat. Protoc.,2006,1(1):387-396

    3. [3]

      Barding Jr, Beni S, Fukao T, Baileyserres J, Larive C K. J. Proteome Res.,2013,12(2):898-909

    4. [4]

      Rohloff J. Molecules,2015,20(2):3431-3462

    5. [5]

      Shuman J L, Cortes D F, Armenta J M, Pokrzywa R M, Mendes P. Methods. Mol. Biol.,2011,678:229-246

    6. [6]

      Goh H H, Khairudin K, Sukiran N A, Normah M N, Baharum S N. Plant. Biol.,2016,18(S1):130-139

    7. [7]

      Berthiller F, Werner U, Sulyok M, Krska R, Hauser M T, Schuhmacher R. Food. Addit. Contam.,2006,23(11):1194-1200

    8. [8]

      Cuthbertson D J, Johnson S R, Piljaczegarac J, Kappel J, Schafer S l. Phytochemistry,2013,91(4):187-197

    9. [9]

      Liu Z, Rochfort S.J. Chromatogr. B,2013,912(11):8-15

    10. [10]

      Kumari T, Sharma C, Bajpai V, Kumar B, Srivastava M. Plant. Growth Regul.,2015,75(1):331-340

    11. [11]

      Fraser K, Lane G A, Otter D E, Harrison S J, Quek S Y, Hemar Y, Rasmussen S. Food. Chem.,2014,151(151):394-403

    12. [12]

      Wiggins N L, Forrister D L, Endara M J, Coley P D, Kursar T A. Ecol. Evol.,2016,6(2):478-492

    13. [13]

      Costa J L D, Tonin F G, Zanolli L A, Tavares M F M. Electrophoresis,2009,30(12):2238-2244

    14. [14]

      Way A. Plant J.,2014, 27(1):191-199

    15. [15]

      Suharti W S, Nose A, Zheng S H. Plant. Prod. Sci.,2016,19(2):1-12

    16. [16]

      Wu X Y, Li N, Li H D, Tang H R. Analyst, 2014,139(7):1769-1778

    17. [17]

      Gluschenko O Y, Polyakov N E. Appl. Magn. Reson.,2011,41(2-4):283-294

    18. [18]

      Kikuchi J, Hirayama T. Methods. Mol. Biol.,2007, 358:273-286

    19. [19]

      LIU Huan, HAN Tao. Journal of Practical Hepatology,2008,11(1):59-61 刘欢, 韩涛.实用肝脏病杂志,2008,11(1):59-61

    20. [20]

      Lenz E M, Wilson I D. J. Proteome. Res.,2007,6(2):443-458

    21. [21]

      Sun M Q, Miao Y, Wang P J, Miao L, Liu L L, Liu J X. Chromatographia,2014,77(3-4):249-255

    22. [22]

      Zhong L P, Cheng F, Lu X Y, Duan Y X, Wang X D. Talanta,2016,158:351-360

    23. [23]

      Villas-Bôas S G, Højer-Pedersen J, Akesson M, Nielsen J. Yeast,2005,22(14):1155-1169

    24. [24]

      Vuckovic D. Anal. Bioanal. Chem.,2012,403(6):1523-1548

    25. [25]

      Kim H K, Verpoorte R. Phytochem. Anal.,2010,21(1):4-13

    26. [26]

      Fathi F, Brun A, Rott K H, Falco Cobra P, Tonelli M, Eghbalnia H R, Caviedes-Vidal E, Karasov W H, Markley J L. Metabolites,2017,7(4):61-69

    27. [27]

      Shi J, Wang Y M, Luo G A. Chromatographia,2011,74(11-12):827-832

    28. [28]

      Sana T R, Waddell K, Fischer S M. J. Chromatogr. B,2008,871(2):314-321

    29. [29]

      Li L L, Lu X, Zhao J Y, Zhang J J, Zhao Y N, Zhao C X, Xu G W. Anal Bioanal. Chem.,2015,407(17):5009-5020

    30. [30]

      García-Cañaveras J C, López S, Castell J V, Donato M T, Lahoz A. Anal. Bioanal. Chem.,2016,408(4):1217-1230

    31. [31]

      Gika H G, Theodoridis G A, Wingate J E, Wilson I D. J. Proteome Res.,2007,6(8):3291-3303

    32. [32]

      YIN Heng, LI Shu-Guang, BAI Xue-Fang, DU Yu-Guang. Chinese Bulletin of Botany,2005,22(5):532-540 尹恒, 李曙光, 白雪芳, 杜昱光.植物学通报,2005,22(5):532-540

    33. [33]

      Fan F, Bowdish D M, Mccary B E. Anal. Bioanal. Chem.,2014,406(15):3723-3733

    34. [34]

      WANG Yuan, GU Hui-Xin, LU Xin, XU Guo-Wang. Chinese Journal of Chromatography,2008,26(6):649-657 王媛, 顾惠新, 路鑫, 许国旺.色谱,2008,26(6):649-657

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  723
  • HTML全文浏览量:  34
文章相关
  • 收稿日期:  2017-10-25
  • 修回日期:  2018-02-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章