还原石墨/氧化锌复合薄膜的制备及其光电转换性能

陈惠敏 贺蕴秋 李一鸣 蔡斯琪

引用本文: 陈惠敏, 贺蕴秋, 李一鸣, 蔡斯琪. 还原石墨/氧化锌复合薄膜的制备及其光电转换性能[J]. 无机化学学报, 2015, (3): 429-438. doi: 10.11862/CJIC.2015.101 shu
Citation:  CHEN Hui-Min, HE Yun-Qiu, LI Yi-Ming, CAI Si-Qi. Preparation and Photoelectric Properties of Reduced Graphite Oxide(rGO)/ZnO Composite Films[J]. Chinese Journal of Inorganic Chemistry, 2015, (3): 429-438. doi: 10.11862/CJIC.2015.101 shu

还原石墨/氧化锌复合薄膜的制备及其光电转换性能

    通讯作者: 贺蕴秋 heyunqiu@tongji.edu.cn
  • 基金项目:

    国家自然科学基金(No.51175162)资助项目。 (No.51175162)

摘要: 本工作研究不同过程还原的氧化石墨rGO/ZnO(reduced graphite oxide/ZnO)复合膜的可见光激发光电转换性能。氧化石墨(GO)经KOH还原处理或NaBH4还原处理后, 和氧化锌溶胶混合, 通过旋涂法和热处理在F掺杂SnO2薄膜导电玻璃(FTO)衬底上形成复合薄膜。采用XRD、FTIR、FE-SEM、XPS、UV-Vis等方法对复合薄膜的晶相结构、微观形貌等进行表征, 并测试了复合薄膜在可见光照射下的光电转换性能。GO的预处理过程对复合薄膜的结构影响显著, 采用NaBH4对GO处理更有利于形成均匀薄膜。光电流测试结果表明不同复合薄膜均能实现可见光照射下产生光电流, 其原理为rGO的光激发电子跃迁到ZnO, 而空穴在rGO中迁移, 在rGO与ZnO界面实现光生载流子分离。其中NaBH4处理后的rGO/ZnO复合薄膜光电流密度最大, 达6×10-7 A·cm-2

English

  • 
    1. [1] Novoselov K S, Geim A K, Morozov S, et al. Science, 2004, 306(5696):666-669[1] Novoselov K S, Geim A K, Morozov S, et al. Science, 2004, 306(5696):666-669

    2. [2] Neto A C, Guinea F, Peres N, et al. Rev. Mod. Phys., 2009, 81(1):109[2] Neto A C, Guinea F, Peres N, et al. Rev. Mod. Phys., 2009, 81(1):109

    3. [3] Mayorov A S, Gorbachev R V, Morozov S V, et al. Nano Lett., 2011,11(6):2396-2399[3] Mayorov A S, Gorbachev R V, Morozov S V, et al. Nano Lett., 2011,11(6):2396-2399

    4. [4] Nair R, Blake P, Grigorenko A, et al. Science, 2008,320 (5881):1308-1308[4] Nair R, Blake P, Grigorenko A, et al. Science, 2008,320 (5881):1308-1308

    5. [5] Hontoria-Lucas C, Lopez-Peinado A, López-González J de D, et al. Carbon, 1995,33(11):1585-1592[5] Hontoria-Lucas C, Lopez-Peinado A, López-González J de D, et al. Carbon, 1995,33(11):1585-1592

    6. [6] Dreyer D R, Park S, Bielawski C W, et al. Chem. Soc. Rev., 2010,39(1):228-240[6] Dreyer D R, Park S, Bielawski C W, et al. Chem. Soc. Rev., 2010,39(1):228-240

    7. [7] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong-Juan(孙红娟), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012,28(5):915-921[7] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong-Juan(孙红娟), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012,28(5):915-921

    8. [8] Loh K P, Bao Q, Eda G, et al. Nat. Chem., 2010,2(12):1015-1024[8] Loh K P, Bao Q, Eda G, et al. Nat. Chem., 2010,2(12):1015-1024

    9. [9] Eda G, Mattevi C, Yamaguchi H, et al. J. Phys. Chem. C, 2009,113(35):15768-15771[9] Eda G, Mattevi C, Yamaguchi H, et al. J. Phys. Chem. C, 2009,113(35):15768-15771

    10. [10] Fan X, Peng W, Li Y, et al. Adv. Mater., 2008,20(23):4490-4493[10] Fan X, Peng W, Li Y, et al. Adv. Mater., 2008,20(23):4490-4493

    11. [11] Shin H J, Kim K K, Benayad A, et al. Adv. Funct. Mater., 2009,19(12):1987-1992[11] Shin H J, Kim K K, Benayad A, et al. Adv. Funct. Mater., 2009,19(12):1987-1992

    12. [12] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565[12] Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007,45 (7):1558-1565

    13. [13] Venugopal G, Krishnamoorthy K, Mohan R, et al. Mater. Chem. Phys., 2012,132(1):29-33[13] Venugopal G, Krishnamoorthy K, Mohan R, et al. Mater. Chem. Phys., 2012,132(1):29-33

    14. [14] Zhan Z, Zheng L, Pan Y, et al. J. Mater. Chem., 2012,22(6): 2589-2595[14] Zhan Z, Zheng L, Pan Y, et al. J. Mater. Chem., 2012,22(6): 2589-2595

    15. [15] Liu H, Sun Q Q, Chen L, et al. Chin. Phys. Lett., 2010,27 (7):077201,DOI: 10.1088/0256-307X/27/7/070201[15] Liu H, Sun Q Q, Chen L, et al. Chin. Phys. Lett., 2010,27 (7):077201,DOI: 10.1088/0256-307X/27/7/070201

    16. [16] Liang Y, Wang H, Casalongue H S, et al. Nano Res., 2010, 3(10):701-705[16] Liang Y, Wang H, Casalongue H S, et al. Nano Res., 2010, 3(10):701-705

    17. [17] ZHANG Xiao-Yan(张晓艳), LI Hao-Peng(李浩鹏), CUI Xiao-Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1903-1907[17] ZHANG Xiao-Yan(张晓艳), LI Hao-Peng(李浩鹏), CUI Xiao-Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1903-1907

    18. [18] CHEN Xiao-Gang(陈小刚), HE Yun-Qiu(贺蕴秋), ZHANG Qiong(张琼), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1953-1959[18] CHEN Xiao-Gang(陈小刚), HE Yun-Qiu(贺蕴秋), ZHANG Qiong(张琼), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1953-1959

    19. [19] Zhang Y, Li H, Pan L, et al. J. Electroanal. Chem., 2009, 634(1):68-71[19] Zhang Y, Li H, Pan L, et al. J. Electroanal. Chem., 2009, 634(1):68-71

    20. [20] Singh G, Choudhary A, Haranath D, et al. Carbon, 2012,50 (2):385-394[20] Singh G, Choudhary A, Haranath D, et al. Carbon, 2012,50 (2):385-394

    21. [21] Marcano D C, Kosynkin D V, Berlin J M, et al. ACS Nano, 2010,4(8):4806-4814[21] Marcano D C, Kosynkin D V, Berlin J M, et al. ACS Nano, 2010,4(8):4806-4814

    22. [22] LI Le(李乐), HE Yun-Qiu(贺蕴秋), CHU Xiao-Fei(储晓菲), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2013,29(8): 1681-1690[22] LI Le(李乐), HE Yun-Qiu(贺蕴秋), CHU Xiao-Fei(储晓菲), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2013,29(8): 1681-1690

    23. [23] Wang J, Tsuzuki T, Tang B, et al. ACS Appl. Mater. Interfaces, 2012,4(6):3084-3090[23] Wang J, Tsuzuki T, Tang B, et al. ACS Appl. Mater. Interfaces, 2012,4(6):3084-3090

    24. [24] Luo Q P, Yu X Y, Lei B X, et al. J. Phys. Chem. C, 2012, 116(14):8111-8117[24] Luo Q P, Yu X Y, Lei B X, et al. J. Phys. Chem. C, 2012, 116(14):8111-8117

    25. [25] Bagri A, Mattevi C, Acik M, et al. Nat. Chem., 2010,2(7): 581-587[25] Bagri A, Mattevi C, Acik M, et al. Nat. Chem., 2010,2(7): 581-587

    26. [26] Tan Z, Chua D H. J. Electrochem. Soc., 2011,158(4):K112-K116[26] Tan Z, Chua D H. J. Electrochem. Soc., 2011,158(4):K112-K116

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  356
  • HTML全文浏览量:  29
文章相关
  • 收稿日期:  2014-12-09
  • 网络出版日期:  2015-01-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章