Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide

Minjun Yin Yuhui Lin Manli Zhuang Wei Xiao Jie Wu

Citation:  Minjun Yin, Yuhui Lin, Manli Zhuang, Wei Xiao, Jie Wu. Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide[J]. Chinese Chemical Letters, 2025, 36(3): 109926. doi: 10.1016/j.cclet.2024.109926 shu

Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide

English

  • Sulfonyl groups are privileged building blocks in pharmaceuticals and natural products [1,2]. Among them, organic sulfones possessing difluoromethyl moiety have drawn condiserable interest due to the presence of this moiety in broad bioactive compounds (Scheme 1a). For instance, compound A exhibits potent antifungal activity against Candida albicans in vivo [3]. Compounds B is demonstrated as hypoxia inducible factor 2α (HIF-2α) inhibitors [4]. Compounds C is able to control animal parasites [5]. With such a plethora of bioactivities, protocols addressing the rapid preparation of α,α-difluoromethyl sulfones have attracted great attention in the past few years. Strategies for the synthesis of α,α-difluoromethyl sulfones with various fluoroalkylation reagents have been developed [6-22]. However, there are few reports for the direct preparation of α,α-difluoromethyl sulfones without fluoroalkylation reagents.

    Multicomponent reactions are considered as a reliable and powerful tools for rapid construction of complex molecules due to their efficiency and simplicity [23-30]. Thus, developing multicomponent reactions in both academic and industry communities is highly desirable. On the other hand, radical sulfonylation has been recognized as a useful approach to sulfonyl compounds [31-39]. In particular, the insertion of sulfur dioxide with readily available surrogates such as DABCO·(SO2)2 and inorganic metabisulfites has been widely explored for the synthesis of various sulfonyl compounds [40-55]. In 2020 and 2022, our group developed photocatalyzed three-component reactions of 2,2-difluoro enol silyl ethers, sulfur dioxide surrogates and aryldiazonium tetrafluoroborates [56] or thianthrenium salts [57] to access α,α-difluoromethyl sulfones (Scheme 1b). However, only α,α-difluoromethyl-β-sulfones were produced.

    Recently, gem–difluoroalkenes have emerged as a class of important fluoro synthons [58-60]. An impressive number of transformations have been achieved with gem–difluoroalkenes, such as defluorination reactions [61-69] and trifluoromethylation [70-74]. In 2022, Wu's group developed the alkoxysulfonylation of gem–difluoroalkenes with sulfonyl chlorides [75]. Encouraged by these advances and the importance of α,α-difluoromethyl sulfones, as well as our continuing interest in sulfur chemistry [76-88], we envisioned that the difunctionalizaiton of gem–difluoroalkenes via sulfur dioxide insertion would be feasible for the construction of significant α,α-difluoromethyl sulfones (Scheme 1c).

    Scheme 1

    Scheme 1.  Bioactive compounds containing α,α-difluoromethyl sulfones and synthesis of α,α-difluoromethyl sulfones.

    We started our investigations by evaluating the four-component reaction of 1-(2,2-difluorovinyl)−4-methoxybenzene 1a, p-methylphenyldiazonium tetrafluoroborate 2a, DABCO·(SO2)2 and methanol. Initially, this reaction was performed in MeCN with fac-Ir(ppy)3 as the photocatalyst under the irradiation of blue LEDs at room temperature. To our delight, high efficiency of this transformation was observed, and the corresponding α,α-difluoromethyl sulfone 3a was afforded in 93% NMR yield (Table 1, entry 1). Lower yields were obtained when the reactions were performed in DCE, THF and toluene (Table 1, entries 2–4). Other sulfur dioxide surrogates, such as Na2SO3, Na2S2O5 and K2S2O5 gave inferior results (Table 1, entries 5–7). Examination of different photocatalyst showed lower yields (Table 1, entries 8 and 9). No higher yield was observed when the reaction was carried out in MeCN:MeOH (8:2) (Table 1, entry 10).

    Table 1

    Table 1.  Optimization of the reaction conditions.a
    DownLoad: CSV

    Having the optimized conditions in hand, the generality of this four-component reaction with respect to gem–difluoroalkenes 1 was then investigated. The results are summarized in Scheme 2. Aromatic gem–difluoroalkenes with electron-donating groups afforded the desired products in moderate to excellent yields (3a-3k). Next, the scope of aryldiazonium tetrafluoroborate 2 was then explored. Aromatic rings with electron-donating groups and electron-withdrawing groups, such as methoxyl, tert–butyl, phenyl, fluoro, bromo, dihydrobenzofuran and 4-methyl-benzopyranone, were suitable for this transformation, leading to the target α,α-difluoromethyl sulfones 3l-3s in 59%−90% yields. Finally, a range of alcohols with a bulky group or a long chain were explored. Both primary (ethanol, benzyl alcohol) and tertiary alcohols (tert–butanol) underwent this reaction smoothly, affording the corresponding products (3t-3v) in 49%−90% yields. Unfortunately, aromatic gem–difluoroalkenes with only electron-withdrawing group and alkyl gem–difluoroalkenes could not afford the desired products.

    Scheme 2

    Scheme 2.  Substrate Scope for the synthesis of α,α-difluoromethyl-β-alkoxysulfones. Conditions: gem–difluoroalkenes 1 (0.2 mmol), DABCO·(SO2)2 (0.2 mmol), aryldiazonium tetrafluoroborate 2 (0.3 mmol), fac-Ir(ppy)3 (0.004 mmol, 0.02 equiv.), MeCN:MeOH (9:1) (2.0 mL), r.t., 24 h, blue LEDs, under N2 atmosphere. Isolated yield based on gem–difluoroalkenes 1.

    Recently, thianthrenium salts have been developed as valuable radical precursors for various photoredox-catalyzed reactions [89-97]. Thus, we also examined thianthrenium salts as radical precursors in this reaction. To our delight, the desired product 3a was successfully furnished, though with only 30% yield (Scheme 3a). However, the alkyl substituted thianthrenium salt 4b could not provide the desired product (Scheme 3a). Furthermore, the benzyl mercaptane as a nucleophilic trapper was also examined in this reaction. Unfortunately, the corresponding product could not be furnished (Scheme 3b).

    Scheme 3

    Scheme 3.  Thianthrenium salts as radical precursors and BnSH as a nucleophilic trapper.

    To verify the practicability of this photoredox-catalyzed synthesis of α,α-difluoromethyl sulfones from sulfur dioxide, a scale-up (2.0 mmol) experiment was performed. Gratifyingly, a similar result was smoothly afforded (Scheme 4a). To examine the utility of the obtained α,α-difluoromethyl sulfones, some synthetic transformations were realized (Scheme 4b). First, the methoxyl group of 3a could be readily removed with triethylsilyl hydride in the presence of aluminum chloride, furnishing product 5 in 74% yield. Furthermore, the methoxyl group could also be replaced by allyl moiety with allylsilane and aluminum chloride, delivering the α,α-difluoromethyl β-allylsulfones 6 in good yields.

    Scheme 4

    Scheme 4.  Scale-up preparation of compound 3a and synthetic transformations.

    To gain mechanistic insights into this photoredox-catalyzed synthesis of α,α-difluoromethyl sulfones from sulfur dioxide, several control experiments were conducted, as shown in Scheme 5. The reaction was completely suppressed when the radical scavenger 2,2,6,6-tetramethylpiperidinooxy (TEMPO) or butylated hydroxytoluene (BHT) was added under the standard conditions (Schemes 5a and b). When 1,1-diphenylethylene was added to the standard conditions, trace amount of 3a was detected along with 62% yield of radical addition product 7 (Scheme 5c). These results confirmed that the arylsulfonyl radical was generated during this transformation. Furthermore, light-on/off experiment was conducted and the results indicated that this reaction was exclusive light dependence (Fig. 1).

    Scheme 5

    Scheme 5.  Control experiments.

    Figure 1

    Figure 1.  Light-on/off experiment.

    On the basis of control experiments and previous studies, a possible mechanism for this photoredox-catalyzed α,α-difluoromethyl sulfones from sulfur dioxide is outlined in Scheme 6. Initially, the excitation of fac-Ir(ppy)3 under visible light irradiation produced the excited state of fac-Ir(ppy)3*, which reduced aryldiazonium tetrafluoroborate 2a to aryl radical 8 along with oxidized fac-IrIV(ppy)3. Subsequently, the aryl radical 8 was trapped by sulfur dioxide from DABCO·(SO2)2 to furnish an arylsulfonyl radical 9, which added to the double bond of gem–difluoroalkenes to form difluoromethylated radical 10. Then, the radical intermediate 10 would be oxidized by fac-IrIV(ppy)3, leading to carbocation intermediate 11 along with the regeneration of fac-Ir(ppy)3. Finally, the carbocation 11 would react with a nucleophilic methanol to give the final product 3a.

    Scheme 6

    Scheme 6.  Proposed mechanism.

    In summary, we have developed a photoredox-catalyzed synthesis of α,α-difluoromethyl sulfones from sulfur dioxide with readily available gem–difluoroalkenes. This reaction features mild reaction conditions, broad substrate scope and good functional group tolerance. Furthermore, this transformation provides an efficient method for the synthesis of α,α-difluoromethyl sulfones from readily avaiable starting materials. Based on the results of control experiments and previous studies, a plausible mechanism involving the aryl radical-trigged insertion of sulfur dioxide is proposed.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Minjun Yin: Methodology, Investigation. Yuhui Lin: Methodology, Investigation. Manli Zhuang: Investigation, Data curation. Wei Xiao: Writing – review & editing, Writing – original draft, Project administration. Jie Wu: Writing – original draft, Project administration.

    Financial support from National Natural Science Foundation of China (Nos. 22201202, 22171206 and 22371201), Natural Science Foundation of Zhejiang Province (No. LZ23B020001), Open Foundation of Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers (No. E22307), Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (No. 2020ZD04), and Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University is gratefully acknowledged.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.109926.


    1. [1]

      M. Feng, B. Tang, H.S. Liang, X. Jiang, Curr. Top. Med. Chem. 16 (2016) 1200–1216. doi: 10.2174/1568026615666150915111741

    2. [2]

      K.A. Scott, J.T. Njardarson, Top. Curr. Chem. 376 (2018) 5. doi: 10.1007/s41061-018-0184-5

    3. [3]

      H. Eto, Y. Kaneko, S. Takeda, et al., Chem. Pharm. Bull. 49 (2001) 173–182. doi: 10.1248/cpb.49.173

    4. [4]

      R.K. Bruick, Y. Chen, J.C.F. Ruiz, Patent, WO2016057242A1, 2016.

    5. [5]

      C. A.G. Bayer, Patent, WO2009080203, 2009.

    6. [6]

      W. Zhang, W. Huang, J. Hu, Angew. Chem. Int. Ed. 48 (2009) 9858–9861. doi: 10.1002/anie.200905077

    7. [7]

      L. Zhu, Y. Li, Y. Zhao, J. Hu, Tetrahedron Lett. 51 (2010) 6150–6152. doi: 10.1016/j.tetlet.2010.09.068

    8. [8]

      G.K.S. Prakash, C. Ni, F. Wang, J. Hu, G.A. Olah, Angew. Chem. Int. Ed. 50 (2011) 2559–2563. doi: 10.1002/anie.201007594

    9. [9]

      W. Huang, C. Ni, Y. Zhao, B. Gao, J. Hu, J. Fluorine Chem. 143 (2012) 161–166. doi: 10.1016/j.jfluchem.2012.05.018

    10. [10]

      W. Huang, C. Ni, Y. Zhao, et al., Tetrahedron 68 (2012) 5137–5144. doi: 10.1016/j.tet.2012.04.039

    11. [11]

      H. Jia, A.P. Häring, F. Berger, L. Zhang, T. Ritter, J. Am. Chem. Soc. 143 (2021) 7623–7628. doi: 10.1021/jacs.1c02606

    12. [12]

      Y. Li, X. Liang, K. Niu, et al., Org. Lett. 24 (2022) 5918–5923. doi: 10.1021/acs.orglett.2c02150

    13. [13]

      Y.M. Su, Y. Hou, F. Yin, et al., Org. Lett. 24 (2022) 2958–2961.

    14. [14]

      W. Miao, C. Ni, Y. Zhao, J. Hu, Org. Lett. 18 (2016) 2766–2769. doi: 10.1021/acs.orglett.6b01258

    15. [15]

      J. Rong, L. Deng, P. Tan, et al., Angew. Chem. Int. Ed. 55 (2016) 2743–2747. doi: 10.1002/anie.201510533

    16. [16]

      J. Xie, T. Zhang, F. Chen, et al., Angew. Chem. Int. Ed. 55 (2016) 2934–2938. doi: 10.1002/anie.201508622

    17. [17]

      J. Chen, J.H. Lin, J.C. Xiao, Tetrahedron 74 (2018) 4295–4297. doi: 10.1016/j.tet.2018.06.062

    18. [18]

      Y.J. Zhu, Z.L. Lei, D.K. Huang, et al., Tetrahedron Lett. 59 (2018) 3184–3187. doi: 10.1016/j.tetlet.2018.07.021

    19. [19]

      P. Xiao, C. Ni, W. Miao, et al., J. Org. Chem. 84 (2019) 8345–8359. doi: 10.1021/acs.joc.9b00419

    20. [20]

      E. Nobile, T. Castanheiro, T. Besset, Chem. Commun. 57 (2021) 12337–12340. doi: 10.1039/d1cc04737j

    21. [21]

      H. Uno, K. Kawai, T. Araki, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 61 (2022) e202117635. doi: 10.1002/anie.202117635

    22. [22]

      E. Nobile, F. Doche, T. Castanheiro, D.G. Musaev, T. Besset, Chem. Eur. J. 30 (2024) e202303362. doi: 10.1002/chem.202303362

    23. [23]

      W.B. He, S.J. Zhao, J.Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107640. doi: 10.1016/j.cclet.2022.06.063

    24. [24]

      H.T. Ji, K.L. Wang, W.T. Ouyang, et al., Green Chem. 25 (2023) 7983–7987. doi: 10.1039/d3gc02575f

    25. [25]

      J. Chen, G. Zhu, J. Wu, Acta Chim. Sin. 81 (2023) 1609–1623. doi: 10.6023/a23070339

    26. [26]

      Y.H. Lu, C. Wu, J.C. Hou, et al., ACS Catal. 13 (2023) 13071–13076. doi: 10.1021/acscatal.3c02268

    27. [27]

      W.T. Ouyang, H.T. Ji, J. Jiang, et al., Chem. Commun. 59 (2023) 14029–14032. doi: 10.1039/d3cc04020h

    28. [28]

      J. Huang, J. Wu, Acta Chim. Sin. 81 (2023) 520–532. doi: 10.6023/A23030088

    29. [29]

      Z. Wang, N. Meng, Y. Lv, et al., Chin. Chem. Lett. 34 (2023) 107599. doi: 10.1016/j.cclet.2022.06.022

    30. [30]

      H.Y. Song, J. Jiang, Y.H. Song, et al., Chin. Chem. Lett. 35 (2024) 109246. doi: 10.1016/j.cclet.2023.109246

    31. [31]

      G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405–10414. doi: 10.1039/c8cc05847d

    32. [32]

      D.Q. Dong, Q.Q. Han, et al., ChemistrySelect 5 (2020) 13103-10134. doi: 10.1002/slct.202003650

    33. [33]

      S. Ye, X. Li, W. Xie, J. Wu, Eur. J. Org. Chem. 2020 (2020) 1274–1287. doi: 10.1002/ejoc.201900396

    34. [34]

      K. Hofman, N. Liu, G. Manolikakes, Chem. Eur. J. 24 (2018) 11852–11863. doi: 10.1002/chem.201705470

    35. [35]

      G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405–10414. doi: 10.1039/c8cc05847d

    36. [36]

      Y. Li, D. Huang, D. Deng, S.R. Guo, Cur. Org. Chem. 26 (2022) 369–381. doi: 10.2174/1385272826666220222110614

    37. [37]

      Y. Wu, Y. Yan, W. Liao, Chin. J. Org. Chem. 43 (2023) 3713–3727. doi: 10.6023/cjoc202305014

    38. [38]

      J. Zhang, P. Wang, Y. Li, J. Wu, Chem. Commun. 59 (2023) 3821–3826. doi: 10.1039/d2cc06339e

    39. [39]

      G. Chen, Z. Lian, Eur. J. Org. Chem. 26 (2023) e202300217. doi: 10.1002/ejoc.202300217

    40. [40]

      S. Chen, Y. Li, M. Wang, X. Jiang, Green Chem. 22 (2020) 322–326. doi: 10.1039/C9GC03841H

    41. [41]

      X. Gong, M. Yang, J.B. Liu, et al., Green Chem. 22 (2020) 1906–1910. doi: 10.1039/d0gc00332h

    42. [42]

      Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907–8911. doi: 10.1002/anie.202001589

    43. [43]

      X. Jia, S. Kramer, T. Skrydstrup, Z. Lian, Angew. Chem. Int. Ed. 60 (2021) 7353–7359. doi: 10.1002/anie.202014111

    44. [44]

      Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907–8911. doi: 10.1002/anie.202001589

    45. [45]

      Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 1346–1353. doi: 10.1002/anie.201911449

    46. [46]

      H. Zhang, M. Wang, X. Jiang, Green Chem. 22 (2020) 8238–8242. doi: 10.1039/d0gc03135f

    47. [47]

      S. Jin, G.C. Haug, R. Trevino, et al., Chem. Sci. 12 (2021) 13914–13921. doi: 10.1039/d1sc04245a

    48. [48]

      T. Zhong, J.T. Yi, Z.D. Chen, et al., Chem. Sci. 12 (2021) 9359–9365. doi: 10.1039/d1sc02503a

    49. [49]

      L. Chen, X. Zhang, M. Zhou, et al., ACS Catal. 12 (2022) 10764–10770. doi: 10.1021/acscatal.2c02297

    50. [50]

      F.S. He, C. Zhang, M. Jiang, et al., Chem. Sci. 13 (2022) 8834–8839. doi: 10.1039/d2sc02497g

    51. [51]

      J. Huang, F. Liu, L.H. Zeng, et al., Nat. Commun. 13 (2022) 7081. doi: 10.1038/s41467-022-34836-y

    52. [52]

      T.S.B. Lou, Y. Kawamata, T. Ewing, et al., Angew. Chem. Int. Ed. 61 (2022) e202208080. doi: 10.1002/anie.202208080

    53. [53]

      C. Zhang, M. Yang, Y. Qiu, et al., Chem. Sci. 13 (2022) 11785–11791. doi: 10.1039/d2sc04027a

    54. [54]

      M. Chen, W. Sun, J. Yang, et al., Green Chem. 25 (2023) 3857–3863. doi: 10.1039/d3gc01059g

    55. [55]

      M. Zhang, L. Liu, B. Wang, et al., ACS Catal. 13 (2023) 11580–11588. doi: 10.1021/acscatal.3c03096

    56. [56]

      F.S. He, Y. Yao, W. Xie, J. Wu, Chem. Commun. 56 (2020) 9469–9472. doi: 10.1039/d0cc03591b

    57. [57]

      F.S. He, P. Bao, Z. Tang, et al., Org. Lett. 24 (2022) 2955–2960. doi: 10.1021/acs.orglett.2c01132

    58. [58]

      Z. Li, X. Qiu, J. Lou, Q. Wang, Chin. J. Org. Chem. 41 (2021) 4192–4207. doi: 10.6023/cjoc202106013

    59. [59]

      P. Sorrentino, R.A. Altman, Synthesis 53 (2021) 3935–3950. doi: 10.1055/a-1547-9270

    60. [60]

      M.O. Zubkov, M.D. Kosobokov, A.D. Dilman, Russ. J. Org. Chem. 57 (2021) 1017–1035. doi: 10.1134/s1070428021070010

    61. [61]

      S.S. Yan, D.S. Wu, J.H. Ye, et al., ACS Catal. 9 (2019) 6987–6992. doi: 10.1021/acscatal.9b02351

    62. [62]

      C.J. Lu, X. Yu, Y.T. Chen, Q.B. Song, H. Wang, Org. Chem. Front. 7 (2020) 2313–2318. doi: 10.1039/d0qo00553c

    63. [63]

      Y. Wang, Q. Ma, G.C. Tsui, Org. Lett. 23 (2021) 5241–5245. doi: 10.1021/acs.orglett.1c01768

    64. [64]

      L. Ge, C. Zhang, C. Pan, et al., Nat. Commun. 13 (2022) 5938. doi: 10.1038/s41467-022-33602-4

    65. [65]

      F. Liu, Z. Zhuang, Q. Qian, X. Zhang, C. Yang, J. Org. Chem. 87 (2022) 2730–2739. doi: 10.1021/acs.joc.1c02662

    66. [66]

      X. Liu, J. Wu, C. Zhang, Org. Lett. 25 (2023) 1564–1568. doi: 10.1021/acs.orglett.3c00347

    67. [67]

      Y.T. Liu, Y.H. Fan, Y. Mei, et al., Org. Lett. 25 (2023) 549–554. doi: 10.1021/acs.orglett.3c00016

    68. [68]

      H. Tan, Y. Zong, Y. Tang, G.C. Tsui, Org. Lett. 25 (2023) 877–882. doi: 10.1021/acs.orglett.3c00108

    69. [69]

      Y. Zhang, J. Wang, Y. Guo, S. Liu, X. Shen, Angew. Chem. Int. Ed. 63 (2024) e202315269. doi: 10.1002/anie.202315269

    70. [70]

      H. Liu, L. Ge, D.X. Wang, N. Chen, C. Feng, Angew. Chem. Int. Ed. 58 (2019) 3918–3922. doi: 10.1002/anie.201814308

    71. [71]

      W.J. Yoo, J. Kondo, J.A. Angew, Chem. Int. Ed 58 (2019) 6772–6775. doi: 10.1002/anie.201902779

    72. [72]

      T.Y. Lin, Z. Pan, Y. Tu, et al., Angew. Chem. Int. Ed. 59 (2020) 22957–22962. doi: 10.1002/anie.202008262

    73. [73]

      R. Chen, D. Yin, L. Lu, et al., Org. Lett 25 (2023) 7293–7297. doi: 10.1021/acs.orglett.3c02512

    74. [74]

      X. Yu, A. Maity, A. Studer, Angew. Chem. Int. Ed. 62 (2023) e202310288. doi: 10.1002/anie.202310288

    75. [75]

      W. Zhu, H. Xi, W. Jiao, et al., Org. Lett. 24 (2022) 720–725. doi: 10.1021/acs.orglett.1c04165

    76. [76]

      P. Bao, F. Yu, F.S. He, et al., Org. Chem. Front. 8 (2021) 4820–4825. doi: 10.1039/d1qo00732g

    77. [77]

      J.Q. Chen, N. Liu, Q. Hu, et al., Org. Chem. Front. 8 (2021) 5316–5321. doi: 10.1039/d1qo00957e

    78. [78]

      F.S. He, P. Bao, F. Yu, et al., Org. Lett. 23 (2021) 7472–7476. doi: 10.1021/acs.orglett.1c02665

    79. [79]

      F.S. He, Y. Yao, Z. Tang, et al., Chem. Commun. 57 (2021) 12603–12606. doi: 10.1039/d1cc05690e

    80. [80]

      F.S. He, M. Zhang, M. Zhang, X. Luo, J. Wu, Org. Chem. Front. 8 (2021) 3746–3751. doi: 10.1039/d1qo00556a

    81. [81]

      J. Huang, F. Ding, Z. Chen, G. Yang, J. Wu, Org. Chem. Front. 8 (2021) 1461–1465. doi: 10.1039/d0qo01546f

    82. [82]

      X. Tu, J. Huang, W. Xie, T. Zhu, J. Wu, Org. Chem. Front. 8 (2021) 1789–1794. doi: 10.1039/d0qo01551b

    83. [83]

      M. Yang, X. Chang, S. Ye, Q. Ding, J. Wu, J. Org. Chem. 86 (2021) 15177–15184. doi: 10.1021/acs.joc.1c01778

    84. [84]

      Y. Yao, Z. Yin, F.S. He, et al., Chem. Commun. 57 (2021) 2883–2886. doi: 10.1039/d0cc07927h

    85. [85]

      C. Zhang, C. Zhang, J. Tang, et al., Adv. Synth. Catal. 363 (2021) 3109–3114. doi: 10.1002/adsc.202100066

    86. [86]

      T. Zhu, J. Shen, Y. Sun, J. Wu, Chem. Commun. 57 (2021) 915–918. doi: 10.1039/d0cc07632e

    87. [87]

      F. Liu, J. Huang, X. Wu, et al., J. Org. Chem. 87 (2022) 6137–6145. doi: 10.1021/acs.joc.2c00381

    88. [88]

      Y. Qiu, J. Yao, H. Xia, et al., Adv. Synth. Catal. 365 (2023) 3392–3396. doi: 10.1002/adsc.202300839

    89. [89]

      C. Chen, Z.J. Wang, H. Lu, Y. Zhao, Z. Shi, Nat. Commun. 12 (2021) 4526. doi: 10.1038/s41467-021-24716-2

    90. [90]

      Y. Zhao, C. Yu, W. Liang, F.W. Patureau, Org. Lett. 23 (2021) 6232–6236. doi: 10.1021/acs.orglett.1c01904

    91. [91]

      M.J. Cabrera-Afonso, A. Granados, G.A. Molander, Angew. Chem. Int. Ed. 61 (2022) e202202706. doi: 10.1002/anie.202202706

    92. [92]

      X. Li, W. Si, Z. Liu, et al., Org. Lett. 24 (2022) 4070–4074. doi: 10.1021/acs.orglett.2c01525

    93. [93]

      M. Liu, Y. Qian, Y. Wu, F. Zhang, Green Chem. 25 (2023) 3852–3856. doi: 10.1039/d3gc00336a

    94. [94]

      W. Liu, H. Hou, H. Jing, et al., Org. Lett. 25 (2023) 8350–8355. doi: 10.1021/acs.orglett.3c03473

    95. [95]

      H. Xu, X. Li, Y. Dong, et al., Org. Lett. 25 (2023) 3784–3789. doi: 10.1021/acs.orglett.3c01303

    96. [96]

      W. Qi, S. Gu, L.G. Xie, Org. Lett. 26 (2024) 728–733. doi: 10.1021/acs.orglett.3c04183

    97. [97]

      H. Xu, X. Li, Y. Wang, et al., Org. Lett. 26 (2024) 1845–1850. doi: 10.1021/acs.orglett.4c00017

  • Scheme 1  Bioactive compounds containing α,α-difluoromethyl sulfones and synthesis of α,α-difluoromethyl sulfones.

    Scheme 2  Substrate Scope for the synthesis of α,α-difluoromethyl-β-alkoxysulfones. Conditions: gem–difluoroalkenes 1 (0.2 mmol), DABCO·(SO2)2 (0.2 mmol), aryldiazonium tetrafluoroborate 2 (0.3 mmol), fac-Ir(ppy)3 (0.004 mmol, 0.02 equiv.), MeCN:MeOH (9:1) (2.0 mL), r.t., 24 h, blue LEDs, under N2 atmosphere. Isolated yield based on gem–difluoroalkenes 1.

    Scheme 3  Thianthrenium salts as radical precursors and BnSH as a nucleophilic trapper.

    Scheme 4  Scale-up preparation of compound 3a and synthetic transformations.

    Scheme 5  Control experiments.

    Figure 1  Light-on/off experiment.

    Scheme 6  Proposed mechanism.

    Table 1.  Optimization of the reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  117
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2025-03-15
  • 收稿日期:  2024-03-01
  • 接受日期:  2024-04-24
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-04-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章