Sierpiński-triangle fractal crystals with the C3v point group

Na Li Xue Zhang Gao-Chen Gu Hao Wang Damian Nieckarz Paweł Szabelski Yang He Yu Wanga Jing-Tao Lü Hao Tang Lian-Mao Peng Shi-Min Hou Kai Wu Yong-Feng Wang

Citation:  Na Li, Xue Zhang, Gao-Chen Gu, Hao Wang, Damian Nieckarz, Paweł Szabelski, Yang He, Yu Wanga, Jing-Tao Lü, Hao Tang, Lian-Mao Peng, Shi-Min Hou, Kai Wu, Yong-Feng Wang. Sierpiński-triangle fractal crystals with the C3v point group[J]. Chinese Chemical Letters, 2015, 26(10): 1198-1202. doi: 10.1016/j.cclet.2015.08.006 shu

Sierpiński-triangle fractal crystals with the C3v point group

    通讯作者: Paweł Szabelski,
    Kai Wu,
    Yong-Feng Wang,
  • 基金项目:

    This work was jointly supported by National Natural Science Foundation of China (Nos. 21373020, 21403008, 61321001, 21433011, 21522301, 21133001, 21333001, 913000002) (Nos. 21373020, 21403008, 61321001, 21433011, 21522301, 21133001, 21333001, 913000002)

    Technology (Nos. 2014CB239302, 2013CB933404, 2011CB808702) (Nos. 2014CB239302, 2013CB933404, 2011CB808702)

    the Research Fund for the Doctoral Program of Higher Education (No. 20130001110029). (No. 20130001110029)

摘要: Self-similar fractals are of importance in both science and engineering. Metal-organic Sierpiński triangles are particularly attractive for applications in gas separation, catalysis and sensing. Such fractals are constructed in this study by using 120° V-shaped 4, 4"-dicyano-1, 1':3', 1"-terphenyl molecules and Fe atoms on Au(1 1 1), and studied in detail by low-temperature scanning tunneling microscopy. Density functional theory calculations are employed to rationalize the invisible Fe atoms in STM images. Monte Carlo simulations are performed to understand the formation mechanism of the surface-supported fractal crystals.

English

  • 
    1. [1] B.B. Mandelbrot, The Fractal Geometry of the Nature, W.H. Freeman and Company, 1982.[1] B.B. Mandelbrot, The Fractal Geometry of the Nature, W.H. Freeman and Company, 1982.

    2. [2] E. van Veen, A. Tomadin, M.I. Katsnelson, S. Yuan, M. Polini, Transport and optical properties of an electron gas in a Sierpinski carpet,http://es.arxiv.org/abs/1504.00628.[2] E. van Veen, A. Tomadin, M.I. Katsnelson, S. Yuan, M. Polini, Transport and optical properties of an electron gas in a Sierpinski carpet,http://es.arxiv.org/abs/1504.00628.

    3. [3] G.R. Newkome, C. Shreiner, Dendrimers derived from 1 to 3 branching motifs, Chem. Rev. 110(2010) 6339-6442.[3] G.R. Newkome, C. Shreiner, Dendrimers derived from 1 to 3 branching motifs, Chem. Rev. 110(2010) 6339-6442.

    4. [4] K.I. Sugiura, H. Tanaka, T. Matsumoto, T. Kawai, Y. Sakata, A Mandala-patterned bandanna-shaped porphyrin oligomer, C1224H1350N84Ni20O88, having a unique size and geometry, Chem. Lett. 28(1999) 1193.[4] K.I. Sugiura, H. Tanaka, T. Matsumoto, T. Kawai, Y. Sakata, A Mandala-patterned bandanna-shaped porphyrin oligomer, C1224H1350N84Ni20O88, having a unique size and geometry, Chem. Lett. 28(1999) 1193.

    5. [5] G.R. Newkome, P. Wang, C.N. Moorefield, et al., Nanoassembly of a fractal polymer:a molecular "Sierpiński hexagonal gasket", Science 312(2006) 1782-1785.[5] G.R. Newkome, P. Wang, C.N. Moorefield, et al., Nanoassembly of a fractal polymer:a molecular "Sierpiński hexagonal gasket", Science 312(2006) 1782-1785.

    6. [6] K. Fujibayashi, R. Hariadi, S.H. Park, E. Winfree, S. Murata, Toward reliable algorithmic self-assembly of DNA tiles:a fixed-width cellular automaton pattern, Nano Lett. 8(2008) 1791-1797.[6] K. Fujibayashi, R. Hariadi, S.H. Park, E. Winfree, S. Murata, Toward reliable algorithmic self-assembly of DNA tiles:a fixed-width cellular automaton pattern, Nano Lett. 8(2008) 1791-1797.

    7. [7] R. Sarkar, K. Guo, C.N. Moorefield, et al., One-step multicomponent self-assembly of a first generation Sierpiński triangle:from fractal design to chemical reality, Angew. Chem. Int. Ed. 53(2014) 12182-12185.[7] R. Sarkar, K. Guo, C.N. Moorefield, et al., One-step multicomponent self-assembly of a first generation Sierpiński triangle:from fractal design to chemical reality, Angew. Chem. Int. Ed. 53(2014) 12182-12185.

    8. [8] M. Wang, C. Wang, X.Q. Hao, et al., Hexagon wreaths:self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands, J. Am. Chem. Soc. 136(2014) 6664-6671.[8] M. Wang, C. Wang, X.Q. Hao, et al., Hexagon wreaths:self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands, J. Am. Chem. Soc. 136(2014) 6664-6671.

    9. [9] H. Röder, E. Hahn, H. Brune, J.P. Bucher, K. Kern, Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces, Nature 366(1993) 141-143.[9] H. Röder, E. Hahn, H. Brune, J.P. Bucher, K. Kern, Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces, Nature 366(1993) 141-143.

    10. [10] H. Brune, C. Bomainczyk, H. Röder, K. Kern, Mechanism of the transition from fractal to dendritic growth of surface aggregates, Nature 369(1994) 469-471.[10] H. Brune, C. Bomainczyk, H. Röder, K. Kern, Mechanism of the transition from fractal to dendritic growth of surface aggregates, Nature 369(1994) 469-471.

    11. [11] J. Shang, Y. Wang, M. Chen, et al., Assembling molecular Sierpiński triangle fractals, Nat. Chem. 7(2015) 389-393.[11] J. Shang, Y. Wang, M. Chen, et al., Assembling molecular Sierpiński triangle fractals, Nat. Chem. 7(2015) 389-393.

    12. [12] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n, Science 283(1999) 1148-1150.[12] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n, Science 283(1999) 1148-1150.

    13. [13] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.[13] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.

    14. [14] C.E. Wilmer, M. Leaf, C.Y. Lee, et al., Large-scale screening of hypothetical metalorganic frameworks, Nat. Chem. 4(2012) 83-89.[14] C.E. Wilmer, M. Leaf, C.Y. Lee, et al., Large-scale screening of hypothetical metalorganic frameworks, Nat. Chem. 4(2012) 83-89.

    15. [15] E.D. Bloch, W.L. Queen, R. Krishna, et al., Hydrocarbon separations in a metalorganic framework with open iron(II) coordination sites, Science 355(2012) 1606-1610.[15] E.D. Bloch, W.L. Queen, R. Krishna, et al., Hydrocarbon separations in a metalorganic framework with open iron(II) coordination sites, Science 355(2012) 1606-1610.

    16. [16] Z.R. Herm, B.M. Wiers, J.A. Mason, et al., Separation of hexane isomers in a metalorganic framework with triangular channels, Science 340(2013) 960-964.[16] Z.R. Herm, B.M. Wiers, J.A. Mason, et al., Separation of hexane isomers in a metalorganic framework with triangular channels, Science 340(2013) 960-964.

    17. [17] Y. Inokuma, S. Yoshioka, J. Ariyoshi, et al., X-ray analysis on the nanogram to the microgram scale using porous complexes, Nature 495(2013) 461-466.[17] Y. Inokuma, S. Yoshioka, J. Ariyoshi, et al., X-ray analysis on the nanogram to the microgram scale using porous complexes, Nature 495(2013) 461-466.

    18. [18] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013), http://dx.doi.org/10.1126/science.1230444.[18] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013), http://dx.doi.org/10.1126/science.1230444.

    19. [19] P. Deria, J.E. Mondloch, O. Karagiaridi, et al., Beyond post-synthesis modification:evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43(2014) 5896-5912.[19] P. Deria, J.E. Mondloch, O. Karagiaridi, et al., Beyond post-synthesis modification:evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43(2014) 5896-5912.

    20. [20] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D naphthalenedisulfonate-cadmium coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand:structure and catalytic property, Chin. Chem. Lett. 25(2014) 243-246.[20] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D naphthalenedisulfonate-cadmium coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand:structure and catalytic property, Chin. Chem. Lett. 25(2014) 243-246.

    21. [21] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.[21] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.

    22. [22] T.M. McDonald, J.A. Mason, X. Kong, et al., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature 519(2015) 303-308.[22] T.M. McDonald, J.A. Mason, X. Kong, et al., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature 519(2015) 303-308.

    23. [23] X.X. Liu, Y. Wang, W.G. Tian, W. Yang, Z.M. Sun, Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands, Chin. Chem. Lett. 26(2015) 641-645.[23] X.X. Liu, Y. Wang, W.G. Tian, W. Yang, Z.M. Sun, Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands, Chin. Chem. Lett. 26(2015) 641-645.

    24. [24] D. Nieckarz, P. Szabelski, Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles, Chem. Comm. 50(2014) 6843-6845.[24] D. Nieckarz, P. Szabelski, Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles, Chem. Comm. 50(2014) 6843-6845.

    25. [25] S. Steppanow, N. Lin, D. Payer, et al., Surface assisted assembly of 2D metalorganic networks that exhibit unusual threefold coordination symmetry, Angew. Chem. Int. Ed. 46(2007) 710-713.[25] S. Steppanow, N. Lin, D. Payer, et al., Surface assisted assembly of 2D metalorganic networks that exhibit unusual threefold coordination symmetry, Angew. Chem. Int. Ed. 46(2007) 710-713.

    26. [26] U. Schlickum, R. Decker, F. Klappenberger, et al., Metal-organic honeycomb nanomeshes with tunable cavity size, Nano Lett. 7(2007) 3813-3817.[26] U. Schlickum, R. Decker, F. Klappenberger, et al., Metal-organic honeycomb nanomeshes with tunable cavity size, Nano Lett. 7(2007) 3813-3817.

    27. [27] U. Schlickum, F. Klappenberger, R. Decker, et al., Surface-confined metal-organic nanostructures from Co-directed assembly of linear terphenyl-dicarbonitrile linkers on Ag(111), J. Phys. Chem. C 114(2010) 15602-15606.[27] U. Schlickum, F. Klappenberger, R. Decker, et al., Surface-confined metal-organic nanostructures from Co-directed assembly of linear terphenyl-dicarbonitrile linkers on Ag(111), J. Phys. Chem. C 114(2010) 15602-15606.

    28. [28] J. Xu, Q.D. Zeng, Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM, Chin. Chem. Lett. 24(2013) 177-182.[28] J. Xu, Q.D. Zeng, Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM, Chin. Chem. Lett. 24(2013) 177-182.

    29. [29] D. Nieckarz, P. Szabelski, Understanding pattern formation in 2D metal-organic coordination systems on solid surfaces, J. Phys. Chem. C 117(2013) 11229-11241.[29] D. Nieckarz, P. Szabelski, Understanding pattern formation in 2D metal-organic coordination systems on solid surfaces, J. Phys. Chem. C 117(2013) 11229-11241.

    30. [30] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 2002.[30] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 2002.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1060
  • HTML全文浏览量:  36
文章相关
  • 发布日期:  2015-08-15
  • 收稿日期:  2015-08-02
  • 网络出版日期:  2015-08-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章