Asymmetric synthesis of emericellamide B

Rong-Guo Ren Jing-Yi Ma Zhuo-Ya Mao Yi-Wen Liu Bang-Guo Wei

Citation:  Rong-Guo Ren, Jing-Yi Ma, Zhuo-Ya Mao, Yi-Wen Liu, Bang-Guo Wei. Asymmetric synthesis of emericellamide B[J]. Chinese Chemical Letters, 2015, 26(10): 1209-1215. doi: 10.1016/j.cclet.2015.07.023 shu

Asymmetric synthesis of emericellamide B

    通讯作者: Bang-Guo Wei,
  • 基金项目:

    We thank the National Natural Science Foundation of China (Nos. 21472022, 21272041, 21072034) (Nos. 21472022, 21272041, 21072034)

摘要: Asymmetric total synthesis of emericellamide B (9.4%, 17 longest linear steps) is detailed in this report. In this synthetic route, the highly methylated (2R, 3R, 4S, 6S)-3-hydroxy-2, 4, 6-trimethyldodecanoic acid (HTMD) unit was effectively prepared through the asymmetric methylation, Wittig and Horner- Wadsworth-Emmons reaction. Moreover, pentafluorophenyl diphenylphophinate (FDPP) proved to be an effective condensation reagent for the macrolactamization between C14 and C18.

English

  • 
    1. [1] J.W. Blunt, B.R. Copp, R.A. Keyzers, M.H.G. Munro, M.R. Prinsep, Marine natural products, Nat. Prod. Rep. 31(2014) 160-258.[1] J.W. Blunt, B.R. Copp, R.A. Keyzers, M.H.G. Munro, M.R. Prinsep, Marine natural products, Nat. Prod. Rep. 31(2014) 160-258.

    2. [2] P. Zhang, X.M. Li, J.N. Wang, X. Li, B.G. Wang, Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii, Chin. Chem. Lett. 26(2015) 313-316.[2] P. Zhang, X.M. Li, J.N. Wang, X. Li, B.G. Wang, Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii, Chin. Chem. Lett. 26(2015) 313-316.

    3. [3] K.X. Zhan, W.H. Jiao, F. Yang, et al., Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis, J. Nat. Prod. 77(2014) 2678-2684.[3] K.X. Zhan, W.H. Jiao, F. Yang, et al., Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis, J. Nat. Prod. 77(2014) 2678-2684.

    4. [4] J. Kitagaki, G. Shi, S. Miyauchi, S. Murakami, Y. Yang, Cyclic depsipeptides as potential cancer therapeutics, Anti-Cancer Drugs 26(2015) 259-271.[4] J. Kitagaki, G. Shi, S. Miyauchi, S. Murakami, Y. Yang, Cyclic depsipeptides as potential cancer therapeutics, Anti-Cancer Drugs 26(2015) 259-271.

    5. [5] J. Swathi, K. Narendra, K.M. Sowjanya, A.K. Satya, Marine fungal metabolites as a rich source of bioactive compounds, Afr. J. Biochem. Res. 7(2013) 184-196.[5] J. Swathi, K. Narendra, K.M. Sowjanya, A.K. Satya, Marine fungal metabolites as a rich source of bioactive compounds, Afr. J. Biochem. Res. 7(2013) 184-196.

    6. [6] L.A. Salvador-Reyes, H. Luesch, Biological targets and mechanisms of action of natural products from marine cyanobacteria, Nat. Prod. Rep. 32(2015) 478-503.[6] L.A. Salvador-Reyes, H. Luesch, Biological targets and mechanisms of action of natural products from marine cyanobacteria, Nat. Prod. Rep. 32(2015) 478-503.

    7. [7] W. Li, A. Schlecker, D. Ma, Total synthesis of antimicrobial and antitumor cyclic depsipeptides, Chem. Commun. (Cambridge, U.K.) 46(2010) 5403-5420.[7] W. Li, A. Schlecker, D. Ma, Total synthesis of antimicrobial and antitumor cyclic depsipeptides, Chem. Commun. (Cambridge, U.K.) 46(2010) 5403-5420.

    8. [8] D.B.M. Virupakshaiah, Docking of secondary metabolites derived frommarine fungi with Hsp90a protein in cancer treatment, J. Adv. Bioinf. Appl. Res. 5(2014) 92-96.[8] D.B.M. Virupakshaiah, Docking of secondary metabolites derived frommarine fungi with Hsp90a protein in cancer treatment, J. Adv. Bioinf. Appl. Res. 5(2014) 92-96.

    9. [9] G.S. Bagavananthem Andavan, R. Lemmens-Gruber, Cyclodepsipeptides from marine sponges:natural agents for drug research, Mar. Drugs 8(2010) 810-834.[9] G.S. Bagavananthem Andavan, R. Lemmens-Gruber, Cyclodepsipeptides from marine sponges:natural agents for drug research, Mar. Drugs 8(2010) 810-834.

    10. [10] D.C. Oh, C.A. Kauffman, P.R. Jensen, W. Fenical, Induced production of emericellamides A and B from the marine-derived Fungus Emericella sp. in competing coculture, J. Nat. Prod. 70(2007) 515-520.[10] D.C. Oh, C.A. Kauffman, P.R. Jensen, W. Fenical, Induced production of emericellamides A and B from the marine-derived Fungus Emericella sp. in competing coculture, J. Nat. Prod. 70(2007) 515-520.

    11. [11] P. Marfey, Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene, Carlsberg Res. Commun. 49(1984) 591-596.[11] P. Marfey, Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene, Carlsberg Res. Commun. 49(1984) 591-596.

    12. [12] J.M. Seco, E. Quinoa, R. Riguera, A practical guide for the assignment of the absolute configuration of alcohols, amines and carboxylic acids by NMR, Tetrahedron:Asymmetry 12(2001) 2915-2925.[12] J.M. Seco, E. Quinoa, R. Riguera, A practical guide for the assignment of the absolute configuration of alcohols, amines and carboxylic acids by NMR, Tetrahedron:Asymmetry 12(2001) 2915-2925.

    13. [13] Y.M. Chiang, E. Szewczyk, T. Nayak, et al., Molecular genetic mining of the Aspergillus secondary metabolome:discovery of the emericellamide biosynthetic pathway, Chem. Biol. (Cambridge, MA, U.S.) 15(2008) 527-532.[13] Y.M. Chiang, E. Szewczyk, T. Nayak, et al., Molecular genetic mining of the Aspergillus secondary metabolome:discovery of the emericellamide biosynthetic pathway, Chem. Biol. (Cambridge, MA, U.S.) 15(2008) 527-532.

    14. [14] S. Ghosh, T.K. Pradhan, The first total synthesis of emericellamide A, Tetrahedron Lett. 49(2008) 3697-3700.[14] S. Ghosh, T.K. Pradhan, The first total synthesis of emericellamide A, Tetrahedron Lett. 49(2008) 3697-3700.

    15. [15] S. Li, S. Liang, W. Tan, Z. Xu, T. Ye, Total synthesis of emericellamides A and B, Tetrahedron 65(2009) 2695-2702.[15] S. Li, S. Liang, W. Tan, Z. Xu, T. Ye, Total synthesis of emericellamides A and B, Tetrahedron 65(2009) 2695-2702.

    16. [16] J.Y. Ma, L.F. Xu, W.F. Huang, B.G. Wei, G.Q. Lin, Total synthesis of emericellamide A:a secondary metabolite of marine cyclic depsipeptide with antimicrobial properties, Synlett (2009) 1307-1310.[16] J.Y. Ma, L.F. Xu, W.F. Huang, B.G. Wei, G.Q. Lin, Total synthesis of emericellamide A:a secondary metabolite of marine cyclic depsipeptide with antimicrobial properties, Synlett (2009) 1307-1310.

    17. [17] D.K. Mohapatra, S. Samad Hossain, S. Dhara, J.S. Yadav, Application of desymmetrization protocol for the formal total synthesis of emericellamide B, Tetrahedron Lett. 51(2010) 3079-3082.[17] D.K. Mohapatra, S. Samad Hossain, S. Dhara, J.S. Yadav, Application of desymmetrization protocol for the formal total synthesis of emericellamide B, Tetrahedron Lett. 51(2010) 3079-3082.

    18. [18] T.K. Pradhan, K.M. Reddy, S. Ghosh, Total synthesis of emericellamides A and B, Tetrahedron:Asymmetry 24(2013) 1042-1051.[18] T.K. Pradhan, K.M. Reddy, S. Ghosh, Total synthesis of emericellamides A and B, Tetrahedron:Asymmetry 24(2013) 1042-1051.

    19. [19] C.M. Si, W. Huang, Z.T. Du, B.G. Wei, G.Q. Lin, Diastereoconvergent synthesis of trans-5-hydroxy-6-substituted-2-piperidinones by addition-cyclization-deprotection process, Org. Lett. 16(2014) 4328-4331.[19] C.M. Si, W. Huang, Z.T. Du, B.G. Wei, G.Q. Lin, Diastereoconvergent synthesis of trans-5-hydroxy-6-substituted-2-piperidinones by addition-cyclization-deprotection process, Org. Lett. 16(2014) 4328-4331.

    20. [20] C.M. Si, Z.Y. Mao, H.Q. Dong, et al., Divergent method to trans-5-hydroxy-6-alkynyl/alkenyl-2-piperidinones:syntheses of (-)-epiquinamide and (+)-swainsonine, J. Org. Chem. 80(2015) 5824-5833.[20] C.M. Si, Z.Y. Mao, H.Q. Dong, et al., Divergent method to trans-5-hydroxy-6-alkynyl/alkenyl-2-piperidinones:syntheses of (-)-epiquinamide and (+)-swainsonine, J. Org. Chem. 80(2015) 5824-5833.

    21. [21] J.Y. Ma, W. Huang, B.G. Wei, Asymmetric synthesis of (E)-dehydroapratoxin A, Tetrahedron Lett. 52(2011) 4598-4601.[21] J.Y. Ma, W. Huang, B.G. Wei, Asymmetric synthesis of (E)-dehydroapratoxin A, Tetrahedron Lett. 52(2011) 4598-4601.

    22. [22] W. Huang, R.G. Ren, H.Q. Dong, B.G. Wei, G.Q. Lin, Diverse synthesis of marine cyclic depsipeptide lagunamide A and its analogues, J. Org. Chem. 78(2013) 10747-10762.[22] W. Huang, R.G. Ren, H.Q. Dong, B.G. Wei, G.Q. Lin, Diverse synthesis of marine cyclic depsipeptide lagunamide A and its analogues, J. Org. Chem. 78(2013) 10747-10762.

    23. [23] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, A rapid esterification by mixed anhydride and its application to large-ring lactonization, Bull. Chem. Soc. Jpn. 52(1979) 1989-1993.[23] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, A rapid esterification by mixed anhydride and its application to large-ring lactonization, Bull. Chem. Soc. Jpn. 52(1979) 1989-1993.

    24. [24] X.S. Chen, S.J. Da, L.H. Yang, et al., A new convenient asymmetric approach to herbarumin III, Chin. Chem. Lett. 18(2007) 255-257.[24] X.S. Chen, S.J. Da, L.H. Yang, et al., A new convenient asymmetric approach to herbarumin III, Chin. Chem. Lett. 18(2007) 255-257.

    25. [25] L. Horner, H. Hoffman, H.G. Wippel, G. Klahre, Phosphorus organic compounds. XX. Phosphine oxides as reagents for olefin formation, Chem. Ber. 92(1959) 2499-2505.[25] L. Horner, H. Hoffman, H.G. Wippel, G. Klahre, Phosphorus organic compounds. XX. Phosphine oxides as reagents for olefin formation, Chem. Ber. 92(1959) 2499-2505.

    26. [26] J. Gao, Y.H. Guo, Y.P. Wang, X.J. Wang, W.S. Xiang, A novel and efficient route for the preparation of atorvastatin, Chin. Chem. Lett. 22(2011) 1159-1162.[26] J. Gao, Y.H. Guo, Y.P. Wang, X.J. Wang, W.S. Xiang, A novel and efficient route for the preparation of atorvastatin, Chin. Chem. Lett. 22(2011) 1159-1162.

    27. [27] D. Dhawan, S.K. Grover, Facile reduction of chalcones to dihydrochalcones with sodium borohydride/nickel(II) system, Synth. Commun. 22(1992) 2405-2409.[27] D. Dhawan, S.K. Grover, Facile reduction of chalcones to dihydrochalcones with sodium borohydride/nickel(II) system, Synth. Commun. 22(1992) 2405-2409.

    28. [28] D.A. Evans, M.D. Ennis, D.J. Mathre, Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of a-substituted carboxylic acid derivatives, J. Am. Chem. Soc. 104(1982) 1737-1739.[28] D.A. Evans, M.D. Ennis, D.J. Mathre, Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of a-substituted carboxylic acid derivatives, J. Am. Chem. Soc. 104(1982) 1737-1739.

    29. [29] J.C. Liu, Y.S. Yang, R.Y. Ji, A convenient method for the asymmetric synthesis of KAD-1229, Chin. Chem. Lett. 16(2005) 430-432.[29] J.C. Liu, Y.S. Yang, R.Y. Ji, A convenient method for the asymmetric synthesis of KAD-1229, Chin. Chem. Lett. 16(2005) 430-432.

    30. [30] T.D. Penning, S.W. Djuric, R.A. Haack, et al., Improved procedure for the reduction of N-acyloxazolidinones, Synth. Commun. 20(1990) 307-312.[30] T.D. Penning, S.W. Djuric, R.A. Haack, et al., Improved procedure for the reduction of N-acyloxazolidinones, Synth. Commun. 20(1990) 307-312.

    31. [31] A.J. Mancuso, D. Swern, Activated dimethyl sulfoxide:useful reagents for synthesis, Synthesis (1981) 165-185.[31] A.J. Mancuso, D. Swern, Activated dimethyl sulfoxide:useful reagents for synthesis, Synthesis (1981) 165-185.

    32. [32] Y. Wang, Z.Z. Liu, Y.F. Tang, S.Z. Chen, An efficient synthetic strategy for construction of functionalized pentacyclic skeleton of ecteinascidin-saframycin alkaloids, Chin. Chem. Lett. 17(2006) 853-856.[32] Y. Wang, Z.Z. Liu, Y.F. Tang, S.Z. Chen, An efficient synthetic strategy for construction of functionalized pentacyclic skeleton of ecteinascidin-saframycin alkaloids, Chin. Chem. Lett. 17(2006) 853-856.

    33. [33] L.H. Shen, H.Y. Li, H.X. Shang, et al., Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties, Chin. Chem. Lett. 24(2013) 299-302.[33] L.H. Shen, H.Y. Li, H.X. Shang, et al., Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties, Chin. Chem. Lett. 24(2013) 299-302.

    34. [34] P.H.J. Carlsen, T. Katsuki, V.S. Martin, K.B. Sharpless, A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds, J. Org. Chem. 46(1981) 3936-3938.[34] P.H.J. Carlsen, T. Katsuki, V.S. Martin, K.B. Sharpless, A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds, J. Org. Chem. 46(1981) 3936-3938.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1067
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2015-07-29
  • 收稿日期:  2015-06-23
  • 网络出版日期:  2015-07-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章