
Theoretical investigations on the thiol-thioester exchange steps of different thioesters
English
Theoretical investigations on the thiol-thioester exchange steps of different thioesters
-
-
-
[1] P.E. Dawson, T.W. Muir, L.C. Lewis, S.B.H. Kent, Synthesis of proteins by native chemical ligation, Science 266(1994) 776-779.[1] P.E. Dawson, T.W. Muir, L.C. Lewis, S.B.H. Kent, Synthesis of proteins by native chemical ligation, Science 266(1994) 776-779.
-
[2] P. Thapa, R.Y. Zhang, V. Menon, et al., Native chemical ligation:a boon to peptide chemistry, Molecules 19(2014) 14461-14483.[2] P. Thapa, R.Y. Zhang, V. Menon, et al., Native chemical ligation:a boon to peptide chemistry, Molecules 19(2014) 14461-14483.
-
[3] S. Stanchev, Z. Zawada, L. Moninc ová, et al., Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern, J. Pept. Sci. 20(2014) 725-735.[3] S. Stanchev, Z. Zawada, L. Moninc ová, et al., Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern, J. Pept. Sci. 20(2014) 725-735.
-
[4] T. Nakamura, A. Shigenaga, K. Sato, et al., Examination of native chemical ligation using peptidyl prolyl thioesters, Chem. Commun. 50(2014) 58-60.[4] T. Nakamura, A. Shigenaga, K. Sato, et al., Examination of native chemical ligation using peptidyl prolyl thioesters, Chem. Commun. 50(2014) 58-60.
-
[5] H. Kawashima, T. Kuruma, M. Yamashita, et al., Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system, J. Pept. Sci. 20(2014) 361-365.[5] H. Kawashima, T. Kuruma, M. Yamashita, et al., Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system, J. Pept. Sci. 20(2014) 361-365.
-
[6] J.S. Zheng, S. Tang, Y.K. Qi, et al., Chemical synthesis of proteins using peptide hydrazides as thioester surrogates, Nat. Protoc. 8(2013) 2483.[6] J.S. Zheng, S. Tang, Y.K. Qi, et al., Chemical synthesis of proteins using peptide hydrazides as thioester surrogates, Nat. Protoc. 8(2013) 2483.
-
[7] H. van de Langemheen, M. van Hoeke, H.C. Quarles van Ufford, et al., Scaffolded multiple cyclic peptide libraries for protein mimics by native chemical ligation, Org. Biomol. Chem. 12(2014) 4471-4478.[7] H. van de Langemheen, M. van Hoeke, H.C. Quarles van Ufford, et al., Scaffolded multiple cyclic peptide libraries for protein mimics by native chemical ligation, Org. Biomol. Chem. 12(2014) 4471-4478.
-
[8] Y.M. Li, Y.T. Li, M. Pan, et al., Irreversible site-specific hydrazinolysis of proteins by use of sortase, Angew. Chem. Int. Ed. 53(2014) 2198-2202.[8] Y.M. Li, Y.T. Li, M. Pan, et al., Irreversible site-specific hydrazinolysis of proteins by use of sortase, Angew. Chem. Int. Ed. 53(2014) 2198-2202.
-
[9] C.T.T. Wong, C.L. Tung, X.C. Li, Synthetic cysteine surrogates used in native chemical ligation, Mol. BioSyst. 9(2013) 826-833.[9] C.T.T. Wong, C.L. Tung, X.C. Li, Synthetic cysteine surrogates used in native chemical ligation, Mol. BioSyst. 9(2013) 826-833.
-
[10] Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids for native chemical ligation at non-Cys sites, Chin. Chem. Lett. 24(2013) 265-269.[10] Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids for native chemical ligation at non-Cys sites, Chin. Chem. Lett. 24(2013) 265-269.
-
[11] L.R. Malins, N.J. Mitchell, R.J. Payne, Peptide ligation chemistry at selenol amino acids, J. Pept. Sci. 20(2014) 64-77.[11] L.R. Malins, N.J. Mitchell, R.J. Payne, Peptide ligation chemistry at selenol amino acids, J. Pept. Sci. 20(2014) 64-77.
-
[12] R.E. Thompson, X.Y. Liu, N. Alonso-García, et al., Trifluoroethanethiol:an additive for efficient one-pot peptide ligation-desulfurization chemistry, J. Am. Chem. 136(2014) 8161.[12] R.E. Thompson, X.Y. Liu, N. Alonso-García, et al., Trifluoroethanethiol:an additive for efficient one-pot peptide ligation-desulfurization chemistry, J. Am. Chem. 136(2014) 8161.
-
[13] J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133(2011) 11080.[13] J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133(2011) 11080.
-
[14] L.E. Canne, S.J. Bark, S.B.H. Kent, Extending the applicability of native chemical ligation, J. Am. Chem. Soc. 118(1996) 5891-5896.[14] L.E. Canne, S.J. Bark, S.B.H. Kent, Extending the applicability of native chemical ligation, J. Am. Chem. Soc. 118(1996) 5891-5896.
-
[15] P.E. Dawson, M.J. Churchill, M.R. Ghadiri, S.B.H. Kent, Modulation of reactivity in native chemical ligation through the use of thiol additives, J. Am. Chem. Soc. 119(1997) 4325-4329.[15] P.E. Dawson, M.J. Churchill, M.R. Ghadiri, S.B.H. Kent, Modulation of reactivity in native chemical ligation through the use of thiol additives, J. Am. Chem. Soc. 119(1997) 4325-4329.
-
[16] C. Wang, Q.X. Guo, Y. Fu, Theoretical analysis of the detailed mechanism of native chemical ligation reactions, Chem. Asian J. 6(2011) 1241-1251.[16] C. Wang, Q.X. Guo, Y. Fu, Theoretical analysis of the detailed mechanism of native chemical ligation reactions, Chem. Asian J. 6(2011) 1241-1251.
-
[17] Q. Zhang, H.Z. Yu, J. Shi, Orbital interactions in native chemical ligation reaction of proline thioesters, Acta. Phys. Chim. Sin. 29(2013) 2321-2331.[17] Q. Zhang, H.Z. Yu, J. Shi, Orbital interactions in native chemical ligation reaction of proline thioesters, Acta. Phys. Chim. Sin. 29(2013) 2321-2331.
-
[18] D.H. Yu, J.N. Shao, R.X. He, M. Li, Mechanism of trifluoromethylation reactions with well-defined NHC copper trifluoromethyl complexes and iodobenzene:a computational exploration, Chin Chem. Lett. 26(2015) 564.[18] D.H. Yu, J.N. Shao, R.X. He, M. Li, Mechanism of trifluoromethylation reactions with well-defined NHC copper trifluoromethyl complexes and iodobenzene:a computational exploration, Chin Chem. Lett. 26(2015) 564.
-
[19] X.N. Ke, C.M. Schienebeck, C.C. Zhou, X.F. Xu, W.P. Tang, Mechanism and reactivity of rhodium-catalyzed intermolecular[5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO:a computational study, Chin. Chem. Lett. 26(2015) 730.[19] X.N. Ke, C.M. Schienebeck, C.C. Zhou, X.F. Xu, W.P. Tang, Mechanism and reactivity of rhodium-catalyzed intermolecular[5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO:a computational study, Chin. Chem. Lett. 26(2015) 730.
-
[20] E.C.B. Johnson, S.B.H. Kent, Insights into the mechanism and catalysis of the native chemical ligation reaction, J Am. Chem. Soc. 128(2006) 6640-6646.[20] E.C.B. Johnson, S.B.H. Kent, Insights into the mechanism and catalysis of the native chemical ligation reaction, J Am. Chem. Soc. 128(2006) 6640-6646.
-
[21] H.Z. Yu, F. Fu, L. Zhang, et al., Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods, Phys. Chem. Chem. Phys. 16(2014) 20964-20970.[21] H.Z. Yu, F. Fu, L. Zhang, et al., Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods, Phys. Chem. Chem. Phys. 16(2014) 20964-20970.
-
[22] H.Z. Yu, Y.M. Yang, L. Zhang, Z.M. Dang, G.H. Hu, Quantum-chemical predictions of pKa's of thiols in DMSO, J. Phys. Chem. A 118(2014) 606-622.[22] H.Z. Yu, Y.M. Yang, L. Zhang, Z.M. Dang, G.H. Hu, Quantum-chemical predictions of pKa's of thiols in DMSO, J. Phys. Chem. A 118(2014) 606-622.
-
[23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2013.[23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2013.
-
[24] T.M. Hackeng, J.H. Griffin, P.E. Dawson, Protein synthesis by native chemical ligation:expanded scope by using straightforward methodology, Proc. Natl. Acad. Sci. U. S. A. 96(1999) 10068-10073.[24] T.M. Hackeng, J.H. Griffin, P.E. Dawson, Protein synthesis by native chemical ligation:expanded scope by using straightforward methodology, Proc. Natl. Acad. Sci. U. S. A. 96(1999) 10068-10073.
-
[25] J.X. Wang, G.M. Fang, Y. He, et al., Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis, Angew. Chem. Int. Ed. 54(2015) 2194.[25] J.X. Wang, G.M. Fang, Y. He, et al., Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis, Angew. Chem. Int. Ed. 54(2015) 2194.
-
[26] S.B. Pollock, S.B.H. Kent, An investigation into the origin of the dramatically reduced reactivity of peptide-prolyl-thioesters in native chemical ligation, Chem. Commun. 47(2011) 2342-2344.[26] S.B. Pollock, S.B.H. Kent, An investigation into the origin of the dramatically reduced reactivity of peptide-prolyl-thioesters in native chemical ligation, Chem. Commun. 47(2011) 2342-2344.
-
[27] C.Z. Sun, G. Luo, S. Neravetla, S.S. Ghosh, B. Forood, Native chemical ligation derived method for recombinant peptide/protein C-terminal amidation, Bioorg. Med. Chem. Lett. 23(2013) 5203-5208.[27] C.Z. Sun, G. Luo, S. Neravetla, S.S. Ghosh, B. Forood, Native chemical ligation derived method for recombinant peptide/protein C-terminal amidation, Bioorg. Med. Chem. Lett. 23(2013) 5203-5208.
-
[28] J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Development of new thioester equivalents for protein chemical synthesis, Acc. Chem. Res. 46(2013) 2475.[28] J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Development of new thioester equivalents for protein chemical synthesis, Acc. Chem. Res. 46(2013) 2475.
-
[29] T. Küh, M. Chen, K. Teichmann, A. Stark, D. Imhof, Ionic liquid 1-ethyl-3-methylimidazolium acetate:an attractive solvent for native chemical ligation of peptides, Tetrahedron Lett. 55(2014) 3658-3662.[29] T. Küh, M. Chen, K. Teichmann, A. Stark, D. Imhof, Ionic liquid 1-ethyl-3-methylimidazolium acetate:an attractive solvent for native chemical ligation of peptides, Tetrahedron Lett. 55(2014) 3658-3662.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1026
- HTML全文浏览量: 2