A colorimetric chemosensor based on new water-soluble PODIPY dye for Hg2+ detection

Xin-Dong Jiang Hai-Feng Yu Jiu-Li Zhao Chang-Liang Sun Ying Xie Lin-Jiu Xiao

Citation:  Xin-Dong Jiang, Hai-Feng Yu, Jiu-Li Zhao, Chang-Liang Sun, Ying Xie, Lin-Jiu Xiao. A colorimetric chemosensor based on new water-soluble PODIPY dye for Hg2+ detection[J]. Chinese Chemical Letters, 2015, 26(10): 1241-1245. doi: 10.1016/j.cclet.2015.07.002 shu

A colorimetric chemosensor based on new water-soluble PODIPY dye for Hg2+ detection

    通讯作者: Xin-Dong Jiang,
    Chang-Liang Sun,
  • 基金项目:

    This work was supported by the Public Research Foundation of Liaoning Province for the Cause of Science (No. 2014003009) (No. 2014003009)

    Technology Key Project of Liaoning Province (No. 2013304007) (No. 2013304007)

    Technology Research Projects (No. 13A150046) (No. 13A150046)

摘要: The phosphorus-containing PODIPY 1 as a chemosensor can detect Hg2+ by a color change from pink to violet red without the use of any instrumentation. PODIPY 1 was selective to Hg2+ with a remarkable absorption change, and addition of other relevant metal ions caused almost no absorption change. The new PODIPY dye 1 was sensitive to various concentrations of Hg2+. The energy gap between the HOMO and LUMO of the metal complex 1-Hg2+ is smaller than that of chemosensor 1, which is in good agreement with the red shift in the absorption observed upon treatment of 1 with Hg2+. The 1-based test strips were easily fabricated and low-cost, useful in practical and efficient Hg2+ test kits.

English

  • 
    1. [1] E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108(2008) 3443-3480.[1] E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108(2008) 3443-3480.

    2. [2] R. Joseph, C.P. Rao, Ion and molecular recognition by lower rim 1, 3-di-conjugates of calix[4] arene as receptors, Chem. Rev. 111(2011) 4658-4702.[2] R. Joseph, C.P. Rao, Ion and molecular recognition by lower rim 1, 3-di-conjugates of calix[4] arene as receptors, Chem. Rev. 111(2011) 4658-4702.

    3. [3] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301(2003) 1203-11203.[3] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301(2003) 1203-11203.

    4. [4] D.W. Domaille, E.L. Que, C.J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol. 4(2008) 168-175.[4] D.W. Domaille, E.L. Que, C.J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol. 4(2008) 168-175.

    5. [5] Mercury Update:Impact on Fish Advisories; EPA Fact Sheet EPA-823-F-01-001, Environmental Protection Agency, Office of Water, Washington, DC, 2001.[5] Mercury Update:Impact on Fish Advisories; EPA Fact Sheet EPA-823-F-01-001, Environmental Protection Agency, Office of Water, Washington, DC, 2001.

    6. [6] Z. Han, B. Zhu, T. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25(2014) 73-76.[6] Z. Han, B. Zhu, T. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25(2014) 73-76.

    7. [7] Z.Q. Yan, S.Y. Guang, H.Y. Xu, X.Y. Liu, An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions, Analyst 136(2011) 1916-1921.[7] Z.Q. Yan, S.Y. Guang, H.Y. Xu, X.Y. Liu, An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions, Analyst 136(2011) 1916-1921.

    8. [8] J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew. Chem. Int. Ed. 46(2007) 4093-4096.[8] J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew. Chem. Int. Ed. 46(2007) 4093-4096.

    9. [9] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Heidelberg, 2006.[9] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Heidelberg, 2006.

    10. [10] F. Bergstroem, I. Mikhalyov, P. Haeggloef, et al., Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology, J. Am. Chem. Soc. 124(2002) 196-204.[10] F. Bergstroem, I. Mikhalyov, P. Haeggloef, et al., Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology, J. Am. Chem. Soc. 124(2002) 196-204.

    11. [11] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono- and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14(2012) 248-251.[11] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono- and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14(2012) 248-251.

    12. [12] X.D. Jiang, D. Xi, J. Zhao, et al., A styryl-containing aza-BODIPY as near-infrared dye, RSC Adv. 4(2014) 60970-60973.[12] X.D. Jiang, D. Xi, J. Zhao, et al., A styryl-containing aza-BODIPY as near-infrared dye, RSC Adv. 4(2014) 60970-60973.

    13. [13] P. Shi, X.D. Jiang, R. Gao, et al., Synthesis and application of Vis/NIRdialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett.26(2015) 834-838.[13] P. Shi, X.D. Jiang, R. Gao, et al., Synthesis and application of Vis/NIRdialkylaminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett.26(2015) 834-838.

    14. [14] X.D. Jiang, J. Zhao, D. Xi, et al., A new water-soluble phosphorus-dipyrromethene and phosphorus-azadipyrromethene dye:PODIPY/aza-PODIPY, Chem. Eur. J. 21(2015) 6079-6082.[14] X.D. Jiang, J. Zhao, D. Xi, et al., A new water-soluble phosphorus-dipyrromethene and phosphorus-azadipyrromethene dye:PODIPY/aza-PODIPY, Chem. Eur. J. 21(2015) 6079-6082.

    15. [15] A. Loudet, K. Burgess, BODIPY dyes and their derivatives:syntheses and spectroscopic properties, Chem. Rev. 107(2007) 4891-4932.[15] A. Loudet, K. Burgess, BODIPY dyes and their derivatives:syntheses and spectroscopic properties, Chem. Rev. 107(2007) 4891-4932.

    16. [16] L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Far-red to near infrared analyteresponsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev. 42(2013) 622-661.[16] L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Far-red to near infrared analyteresponsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev. 42(2013) 622-661.

    17. [17] Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent chemodosimeters for bioimaging, Chem. Rev. 113(2013) 192-270.[17] Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent chemodosimeters for bioimaging, Chem. Rev. 113(2013) 192-270.

    18. [18] S.-B. Yi, H.-F. Gao, Q. Li, Y.-F. Ye, et al., Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles, Chin. Chem. Lett. 26(2015)872-876.[18] S.-B. Yi, H.-F. Gao, Q. Li, Y.-F. Ye, et al., Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles, Chin. Chem. Lett. 26(2015)872-876.

    19. [19] P.-Z. Chen, H.-R. Zheng, L.-Y. Niu, et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY, Chin. Chem. Lett. 6(2015) 631-635.[19] P.-Z. Chen, H.-R. Zheng, L.-Y. Niu, et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY, Chin. Chem. Lett. 6(2015) 631-635.

    20. [20] M. Sun, H. Nie, J. Yao, Y. Zhong, Bis-triarylamine with a cyclometalated diosmium bridge:a multi-stage redox-active system, Chin. Chem. Lett. 6(2015) 649-652.[20] M. Sun, H. Nie, J. Yao, Y. Zhong, Bis-triarylamine with a cyclometalated diosmium bridge:a multi-stage redox-active system, Chin. Chem. Lett. 6(2015) 649-652.

    21. [21] Y. Wu, C. Cheng, L. Jiao, et al., β-Thiophene-fused BF2-azadipyrromethenes as near-infrared dyes, Org. Lett. 16(2014) 748-751.[21] Y. Wu, C. Cheng, L. Jiao, et al., β-Thiophene-fused BF2-azadipyrromethenes as near-infrared dyes, Org. Lett. 16(2014) 748-751.

    22. [22] K. Huang, H. Yang, Z. Zhou, et al., A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(II) complexes, Inorg. Chim. Acta 362(2009) 2577-2580.[22] K. Huang, H. Yang, Z. Zhou, et al., A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(II) complexes, Inorg. Chim. Acta 362(2009) 2577-2580.

    23. [23] M. Chen, X. Lv, Y. Liu, et al., An 2-(20-aminophenyl)benzoxazole-based off-on fluorescent chemosensor for Zn2+ in aqueous solution, Org. Biomol. Chem. 9(2011) 2345-2349.[23] M. Chen, X. Lv, Y. Liu, et al., An 2-(20-aminophenyl)benzoxazole-based off-on fluorescent chemosensor for Zn2+ in aqueous solution, Org. Biomol. Chem. 9(2011) 2345-2349.

    24. [24] X. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J.Y. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112(2012) 1910-1956.[24] X. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J.Y. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112(2012) 1910-1956.

    25. [25] M.N. Elizabeth, J.L. Stephen, Turn-on fluorescent sensor for the selective detection of mercuric ion in aqueous media, J. Am. Chem. Soc. 125(2003) 14270-14271.[25] M.N. Elizabeth, J.L. Stephen, Turn-on fluorescent sensor for the selective detection of mercuric ion in aqueous media, J. Am. Chem. Soc. 125(2003) 14270-14271.

    26. [26] H.G. Brittain, Physical Characterization of Pharmaceutical Solids, Marcel Dekker, New York, 1995.[26] H.G. Brittain, Physical Characterization of Pharmaceutical Solids, Marcel Dekker, New York, 1995.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1009
  • HTML全文浏览量:  31
文章相关
  • 发布日期:  2015-07-06
  • 收稿日期:  2015-05-06
  • 网络出版日期:  2015-06-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章