Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature

Chi Fang Jian-Jun Dai Hua-Jian Xu Qing-Xiang Guo Yao Fu

Citation:  Chi Fang, Jian-Jun Dai, Hua-Jian Xu, Qing-Xiang Guo, Yao Fu. Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature[J]. Chinese Chemical Letters, 2015, 26(10): 1265-1268. doi: 10.1016/j.cclet.2015.07.001 shu

Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature

    通讯作者: Hua-Jian Xu,
    Yao Fu,
  • 基金项目:

    The authors are grateful to the National Basic Research Program of China (Nos. 2013CB228103, 2012CB215306) (Nos. 2013CB228103, 2012CB215306)

    NNSFC (Nos. 21472033, 21325208, 21172209) (Nos. 21472033, 21325208, 21172209)

    FRFCU (No. WK2060190025) (No. WK2060190025)

    SRFDP (No. 20123402130008) (No. 20123402130008)

    CAS (No. KJCX2-EW-J02)  (No. KJCX2-EW-J02)

摘要: An iron(III)-catalyzed selective oxidation of 5-HMF to 2, 5-DFF in air at room temperature was developed. This approach gives 2, 5-DFF with good selectivity and yields. Additionally, a two-step process was developed for the oxidation of 2, 5-DFF to 2, 5-FDCA at remarkably high substrate concentrations. This work demonstrates unequivocally the great potential of iron as a cheap and earth-abundant catalyst for the development of new protocols for the conversion of biomass to value-added chemicals.

English

  • 
    1. [1] (a) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107(2007) 2411-2502;[1] (a) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107(2007) 2411-2502;

    2. [2]

      (b) J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew. Chem. Int. Ed. 46(2007) 7164-7183;(b) J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew. Chem. Int. Ed. 46(2007) 7164-7183;

    3. [3]

      (c) P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41(2012) 1538-1558;(c) P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41(2012) 1538-1558;

    4. [4]

      (d) D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem. Soc. Rev. 41(2012) 8075-8098;(d) D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem. Soc. Rev. 41(2012) 8075-8098;

    5. [5]

      (e) M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts, Chem. Rev. 114(2014) 1827-1870.(e) M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts, Chem. Rev. 114(2014) 1827-1870.

    6. [2] (a) Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312(2006) 1933-1937;[2] (a) Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312(2006) 1933-1937;

    7. [7]

      (b) H.B. Zhao, J.E. Holladay, H. Brown, et al.,Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(2007) 1597-1600;(b) H.B. Zhao, J.E. Holladay, H. Brown, et al.,Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(2007) 1597-1600;

    8. [8]

      (c) G. Yong, Y.G. Zhang, J.Y. Ying, Efficient catalytic systemfor the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem. Int. Ed. 47(2008) 9345-9348;(c) G. Yong, Y.G. Zhang, J.Y. Ying, Efficient catalytic systemfor the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem. Int. Ed. 47(2008) 9345-9348;

    9. [9]

      (d) S.Q. Hu, Z.F. Zhang, B.X. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common lewis acid SnCl4 in an ionic liquid, Green Chem. 11(2009) 1746-1749;(d) S.Q. Hu, Z.F. Zhang, B.X. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common lewis acid SnCl4 in an ionic liquid, Green Chem. 11(2009) 1746-1749;

    10. [10]

      (e) M. Mascal, E.B. Nikitin, High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chem. 12(2010) 370-373;(e) M. Mascal, E.B. Nikitin, High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chem. 12(2010) 370-373;

    11. [11]

      (f) T. Stahlberg, S.R. Rodriguez, A. Riisager, Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquidswith boric acid as a promoter, Chem. Eur. J. 17(2011) 1456-1464;(f) T. Stahlberg, S.R. Rodriguez, A. Riisager, Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquidswith boric acid as a promoter, Chem. Eur. J. 17(2011) 1456-1464;

    12. [12]

      (g) F. Liu, J. Barrault, K. Vigier, F. Jerome, Dehydration of highly concentrated solutions of fructose to 5-hydroxymethylfurfural in a cheap and sustainable choline chloride/carbon dioxide system, ChemSusChem 5(2012) 1223-1226;(g) F. Liu, J. Barrault, K. Vigier, F. Jerome, Dehydration of highly concentrated solutions of fructose to 5-hydroxymethylfurfural in a cheap and sustainable choline chloride/carbon dioxide system, ChemSusChem 5(2012) 1223-1226;

    13. [13]

      (h) F.R. Tao, C. Zhuang, Y.Z. Cui, et al., Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25(2014) 757-761.(h) F.R. Tao, C. Zhuang, Y.Z. Cui, et al., Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25(2014) 757-761.

    14. [3] (a) J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131(2009) 1979-1985;[3] (a) J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131(2009) 1979-1985;

    15. [15]

      (b) W.H. Peng, Y.Y. Lee, C. Wu, et al., Acid-base bi-functionalized, large-pored mesoporous silica nanoparticlesfor cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem. 22(2012) 23181-23185.(b) W.H. Peng, Y.Y. Lee, C. Wu, et al., Acid-base bi-functionalized, large-pored mesoporous silica nanoparticlesfor cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem. 22(2012) 23181-23185.

    16. [4] (a) C. Moreau, M.N. Belgacem, A. Gandini, Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers, Top. Catal. 27(2004) 11-30;[4] (a) C. Moreau, M.N. Belgacem, A. Gandini, Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers, Top. Catal. 27(2004) 11-30;

    17. [17]

      (b) R.J. Putten, J.C. Waal, E. Jong, et al., Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev. 113(2013) 1499-1597.(b) R.J. Putten, J.C. Waal, E. Jong, et al., Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev. 113(2013) 1499-1597.

    18. [5] K.T. Hopkins, W.D. Wilson, B.C. Bendan, et al., Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents, J. Med. Chem. 41(1998) 3872-3878.[5] K.T. Hopkins, W.D. Wilson, B.C. Bendan, et al., Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents, J. Med. Chem. 41(1998) 3872-3878.

    19. [6] M. Del Poeta, W.A. Schell, C.C. Dykstra, et al., Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agent, Antimicrob. Agents Chemother. 42(1998) 2495-2502.[6] M. Del Poeta, W.A. Schell, C.C. Dykstra, et al., Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agent, Antimicrob. Agents Chemother. 42(1998) 2495-2502.

    20. [7] D.T. Richter, T.D. Lash, Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the 4+1 synthesis of sapphyrins, Tetrahedron Lett. 40(1999) 6735-6738.[7] D.T. Richter, T.D. Lash, Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the 4+1 synthesis of sapphyrins, Tetrahedron Lett. 40(1999) 6735-6738.

    21. [8] (a) O.W. Howarth, G.G. Morgan, V. McKee, et al., Conformational choice in disilver cryptates; a 1H NMR and structural study, J. Chem. Soc., Dalton Trans. 12(1999) 2097-2102;[8] (a) O.W. Howarth, G.G. Morgan, V. McKee, et al., Conformational choice in disilver cryptates; a 1H NMR and structural study, J. Chem. Soc., Dalton Trans. 12(1999) 2097-2102;

    22. [22]

      (b) Z. Hui, A. Gandini, Polymeric schiff bases bearing furan moieties, Eur. Polym. J. 28(1992) 1461-1469;(b) Z. Hui, A. Gandini, Polymeric schiff bases bearing furan moieties, Eur. Polym. J. 28(1992) 1461-1469;

    23. [23]

      (c) M. Baumgarten, N. Tyutyulkov, Nonclassical conducting polymers:new approaches to organic metals, Chem. Eur. J. 4(1998) 987-989;(c) M. Baumgarten, N. Tyutyulkov, Nonclassical conducting polymers:new approaches to organic metals, Chem. Eur. J. 4(1998) 987-989;

    24. [24]

      (d) A.S. Amarasekara, D. Green, L.D. Williams, Renewable resources based polymers:synthesis and characterization of 2,5-diformylfuran-urea resin, Eur. Polym. J. 45(2009) 595-598.(d) A.S. Amarasekara, D. Green, L.D. Williams, Renewable resources based polymers:synthesis and characterization of 2,5-diformylfuran-urea resin, Eur. Polym. J. 45(2009) 595-598.

    25. [9] (a) W. Partenheimer, V.V. Grushin, Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal/bromide catalysts, Adv. Synth. Catal. 343(2001) 102-111;[9] (a) W. Partenheimer, V.V. Grushin, Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal/bromide catalysts, Adv. Synth. Catal. 343(2001) 102-111;

    26. [26]

      (b) M. Krçger, K.D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Top. Catal. 13(2000) 237-242.(b) M. Krçger, K.D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Top. Catal. 13(2000) 237-242.

    27. [10] (a) C. Carlini, P. Patrono, A.M.R. Galletti, et al., Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate, Appl. Catal. A:Gen. 289(2005) 197-204;[10] (a) C. Carlini, P. Patrono, A.M.R. Galletti, et al., Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate, Appl. Catal. A:Gen. 289(2005) 197-204;

    28. [28]

      (b) O.C. Navarro, A.C. Canos, S.I. Chornet, Chemicals from biomass:aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous support, Top. Catal. 52(2009) 304-314.(b) O.C. Navarro, A.C. Canos, S.I. Chornet, Chemicals from biomass:aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous support, Top. Catal. 52(2009) 304-314.

    29. [11] J.P. Ma, Z.T. Du, J. Xu, et al., Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material, ChemSusChem 4(2011) 51-54.[11] J.P. Ma, Z.T. Du, J. Xu, et al., Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material, ChemSusChem 4(2011) 51-54.

    30. [12] T.S. Hansen, I. Sádaba, A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A:Gen. 456(2013) 44-50.[12] T.S. Hansen, I. Sádaba, A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A:Gen. 456(2013) 44-50.

    31. [13] Z.Z. Yang, J. Deng, T. Pan, et al., A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2, Green Chem. 14(2012) 2986-2989.[13] Z.Z. Yang, J. Deng, T. Pan, et al., A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2, Green Chem. 14(2012) 2986-2989.

    32. [14] (a) J.F. Nie, J.H. Xie, H.C. Liu, J. Catal, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts 301(2013) 83-91;[14] (a) J.F. Nie, J.H. Xie, H.C. Liu, J. Catal, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts 301(2013) 83-91;

    33. [33]

      (b) A. Takagaki, M. Takahashi, S. Nishimura, et al., One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal. 1(2011) 1562-1565.(b) A. Takagaki, M. Takahashi, S. Nishimura, et al., One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal. 1(2011) 1562-1565.

    34. [15] B. Saha, S. Dutta, M.M. Abu-Omar, Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts, Catal. Sci. Technol. 2(2012) 79-81.[15] B. Saha, S. Dutta, M.M. Abu-Omar, Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts, Catal. Sci. Technol. 2(2012) 79-81.

    35. [16] A.S. Amarasekara, D. Green, E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun. 9(2008) 286-288.[16] A.S. Amarasekara, D. Green, E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun. 9(2008) 286-288.

    36. [17] (a) N.T. Le, P. Lakshmanan, K. Cho, et al., Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts, Appl. Catal. A:Gen. 464(2013) 305-312;[17] (a) N.T. Le, P. Lakshmanan, K. Cho, et al., Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts, Appl. Catal. A:Gen. 464(2013) 305-312;

    37. [37]

      (b) I. Sádaba, Y.Y. Gorbanev, A. Riisager, Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, ChemCatChem 5(2013) 284-293.(b) I. Sádaba, Y.Y. Gorbanev, A. Riisager, Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, ChemCatChem 5(2013) 284-293.

    38. [18] S.M. Ma, J.X. Liu, S.H. Li, et al., Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones:catalysis with table salt, Adv. Synth. Catal. 353(2011) 1005-1017.[18] S.M. Ma, J.X. Liu, S.H. Li, et al., Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones:catalysis with table salt, Adv. Synth. Catal. 353(2011) 1005-1017.

    39. [19] E.W. Abel, F.G.A. Stone, G. Wilkinson, Comprehensive Organometallic Chemistry II, vol. 7, Pergamon, 1995, pp. 78-79.[19] E.W. Abel, F.G.A. Stone, G. Wilkinson, Comprehensive Organometallic Chemistry II, vol. 7, Pergamon, 1995, pp. 78-79.

    40. [20] T. Werby, G. Petersen, Top Value-Added Chemicals from Biomass, vol. 1, Pacific Northwest National Laboratory, 2004p. 27.[20] T. Werby, G. Petersen, Top Value-Added Chemicals from Biomass, vol. 1, Pacific Northwest National Laboratory, 2004p. 27.

    41. [21] (a) J.P. Ma, Y. Pang, M. Wang, et al., The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials, J. Mater. Chem. 22(2012) 3457-3461;[21] (a) J.P. Ma, Y. Pang, M. Wang, et al., The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials, J. Mater. Chem. 22(2012) 3457-3461;

    42. [42]

      (b) J.P. Ma, X.F. Yu, J. Xu, Y. Pang, Synthesis and crystallinity of poly (butylene 2, 5-furandicarboxylate), Polymer 53(2012) 4145-4151.(b) J.P. Ma, X.F. Yu, J. Xu, Y. Pang, Synthesis and crystallinity of poly (butylene 2, 5-furandicarboxylate), Polymer 53(2012) 4145-4151.

    43. [22] (a) E. Taarning, I.S. Nielsen, K. Egeblad, et al., Chemicals from renewables:aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts, Chem-SusChem 1(2008) 75-78;[22] (a) E. Taarning, I.S. Nielsen, K. Egeblad, et al., Chemicals from renewables:aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts, Chem-SusChem 1(2008) 75-78;

    44. [44]

      (b) O. Casanova, S. Iborra, A. Corma, Biomass into chemicals:aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem 2(2009) 1138-1144;(b) O. Casanova, S. Iborra, A. Corma, Biomass into chemicals:aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem 2(2009) 1138-1144;

    45. [45]

      (c) M.A. Lilga, R.T. Hallen, M. Gray, Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF), Top. Catal. 53(2010) 1264-1269;(c) M.A. Lilga, R.T. Hallen, M. Gray, Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF), Top. Catal. 53(2010) 1264-1269;

    46. [46]

      (d) S.E. Davis, L.R. Houk, E.C. Tamargo, et al., Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today 160(2011) 55-60;(d) S.E. Davis, L.R. Houk, E.C. Tamargo, et al., Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today 160(2011) 55-60;

    47. [47]

      (e) S.E. Davis, B.N. Zope, R.J. Davis, On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts, Green Chem. 14(2012) 143-147;(e) S.E. Davis, B.N. Zope, R.J. Davis, On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts, Green Chem. 14(2012) 143-147;

    48. [48]

      (f) J.M. Gallo, D.M. Alonso, J.A. Dumesic, Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents, Green Chem. 15(2013) 85-90;(f) J.M. Gallo, D.M. Alonso, J.A. Dumesic, Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents, Green Chem. 15(2013) 85-90;

    49. [49]

      (g) J. Cai, H. Ma, Q. Song, Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions, Chem. Eur. J. 19(2013) 14215-14223;(g) J. Cai, H. Ma, Q. Song, Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions, Chem. Eur. J. 19(2013) 14215-14223;

    50. [50]

      (h) G.S. Yi, S.P. Teong, Y.G. Zhang, Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid, Chem-SusChem 7(2014) 2131-2137; (i) S. Siankevich, G. Savoglidis, P.J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions, J. Catal. 315(2014) 67-74.(h) G.S. Yi, S.P. Teong, Y.G. Zhang, Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid, Chem-SusChem 7(2014) 2131-2137; (i) S. Siankevich, G. Savoglidis, P.J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions, J. Catal. 315(2014) 67-74.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1015
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2015-07-08
  • 收稿日期:  2015-04-14
  • 网络出版日期:  2015-05-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章