
Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction
English
Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction
-
Key words:
- Michael addition
- / Sulfur-containing compounds
- / Cysteine
- / Fluorescent probe
-
-
-
[1] Z. Abedinzadeh, Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest, Can. J. Physiol. Pharmacol. 79(2001) 166-170.[1] Z. Abedinzadeh, Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest, Can. J. Physiol. Pharmacol. 79(2001) 166-170.
-
[2] J.W. Calvert, S. Jha, S. Gundewar, et al., Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res. 105(2009) 365-374.[2] J.W. Calvert, S. Jha, S. Gundewar, et al., Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res. 105(2009) 365-374.
-
[3] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals, Cancer Metastasis Rev. 29(2010) 405-434.[3] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals, Cancer Metastasis Rev. 29(2010) 405-434.
-
[4] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25(2014) 221-225.[4] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25(2014) 221-225.
-
[5] S.W. Benson, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78(1978) 23-35.[5] S.W. Benson, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78(1978) 23-35.
-
[6] X.F. Yang, Z. Su, C.H. Liu, H.P. Qi, M.L. Zhao, A thiol-selective fluorogenic probe based on the cleavage of 4-methylumbelliferyl-20,40, 60-trinitropheyl ether, Anal. Bioanal. Chem. 396(2010) 2667-2674.[6] X.F. Yang, Z. Su, C.H. Liu, H.P. Qi, M.L. Zhao, A thiol-selective fluorogenic probe based on the cleavage of 4-methylumbelliferyl-20,40, 60-trinitropheyl ether, Anal. Bioanal. Chem. 396(2010) 2667-2674.
-
[7] M. Zhang, M.X. Yu, F.Y. Li, et al., A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc. 129(2007) 10322-10333.[7] M. Zhang, M.X. Yu, F.Y. Li, et al., A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc. 129(2007) 10322-10333.
-
[8] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem. Int. Ed. 52(2013) 1688-1691.[8] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem. Int. Ed. 52(2013) 1688-1691.
-
[9] Y.Q. Sun, M.L. Chen, J. Liu, et al., Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols, Chem. Commun. 47(2011) 11029-11031.[9] Y.Q. Sun, M.L. Chen, J. Liu, et al., Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols, Chem. Commun. 47(2011) 11029-11031.
-
[10] L. Li, H.Y. Li, L. Sun, et al., A highly sensitive fluorescence probe for fast thiolquantification assay of glutathione reductase, Angew. Chem. Int. Ed. 48(2009) 4034-4037.[10] L. Li, H.Y. Li, L. Sun, et al., A highly sensitive fluorescence probe for fast thiolquantification assay of glutathione reductase, Angew. Chem. Int. Ed. 48(2009) 4034-4037.
-
[11] S.T. Huang, K.N. Ting, K.L. Wang, Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta 620(2008) 120-126.[11] S.T. Huang, K.N. Ting, K.L. Wang, Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta 620(2008) 120-126.
-
[12] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] arenes via thiol-ene"click" chemistry, Chin. Chem. Lett. 24(2013) 367-369.[12] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] arenes via thiol-ene"click" chemistry, Chin. Chem. Lett. 24(2013) 367-369.
-
[13] W.M. Xuan, C.Q. Sheng, Y.T. Cao, W.H. He, W. Wang, Fluorescent probes for the detection of hydrogen sulfide in biological systems, Angew. Chem. Int. Ed. 51(2012) 2282-2284.[13] W.M. Xuan, C.Q. Sheng, Y.T. Cao, W.H. He, W. Wang, Fluorescent probes for the detection of hydrogen sulfide in biological systems, Angew. Chem. Int. Ed. 51(2012) 2282-2284.
-
[14] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133(2011) 10078-10080.[14] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133(2011) 10078-10080.
-
[15] J.H. Lee, C.S. Lim, Y.S. Tian, J.H. Han, B.R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc. 132(2010) 1216-1217.[15] J.H. Lee, C.S. Lim, Y.S. Tian, J.H. Han, B.R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc. 132(2010) 1216-1217.
-
[16] M.M. Pires, J. Chmielewski, Fluorescence imaging of cellular glutathione using a latent rhodamine, Org. Lett. 10(2008) 837-840.[16] M.M. Pires, J. Chmielewski, Fluorescence imaging of cellular glutathione using a latent rhodamine, Org. Lett. 10(2008) 837-840.
-
[17] X. Li, S.J. Qian, Q.J. He, et al., Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells, Org. Biomol. Chem. 8(2010) 3627-3630.[17] X. Li, S.J. Qian, Q.J. He, et al., Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells, Org. Biomol. Chem. 8(2010) 3627-3630.
-
[18] S.M. Ji, H.M. Guo, X.L. Yuan, et al., A highly selective off-on red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett. 12(2010) 2876-2879.[18] S.M. Ji, H.M. Guo, X.L. Yuan, et al., A highly selective off-on red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett. 12(2010) 2876-2879.
-
[19] S.P. Wang, W.J. Deng, D. Sun, et al., A colorimetric and fluorescent merocyaninebased probe for biological thiols, Org. Biomol. Chem. 7(2009) 4017-4020.[19] S.P. Wang, W.J. Deng, D. Sun, et al., A colorimetric and fluorescent merocyaninebased probe for biological thiols, Org. Biomol. Chem. 7(2009) 4017-4020.
-
[20] W. Jiang, Q.Q. Fu, H.Y. Fan, J. Ho, W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem. 119(2007) 8597-8600.[20] W. Jiang, Q.Q. Fu, H.Y. Fan, J. Ho, W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem. 119(2007) 8597-8600.
-
[21] J. Bouffard, Y. Kim, T.M. Swage, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.[21] J. Bouffard, Y. Kim, T.M. Swage, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.
-
[22] J.Y. Shao, H.M. Guo, S.M. Ji, J.Z. Zhao, Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine, Biosens. Bioelectron. 26(2011) 3012-3017.[22] J.Y. Shao, H.M. Guo, S.M. Ji, J.Z. Zhao, Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine, Biosens. Bioelectron. 26(2011) 3012-3017.
-
[23] B.A. Krizek, B.T. Amann, V.J. Kilfoil, D.L. Merkle, J.M. Berg, A consensus zinc finger peptide:design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, J. Am. Chem. Soc. 113(1991) 4518-4523.[23] B.A. Krizek, B.T. Amann, V.J. Kilfoil, D.L. Merkle, J.M. Berg, A consensus zinc finger peptide:design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, J. Am. Chem. Soc. 113(1991) 4518-4523.
-
[24] H.P. Wu, C.C. Huang, T.L. Cheng, W.L. Tseng, Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta 76(2008) 347-352.[24] H.P. Wu, C.C. Huang, T.L. Cheng, W.L. Tseng, Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta 76(2008) 347-352.
-
[25] N. Shao, J.Y. Jin, S.M. Cheung, et al., A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. 118(2006) 5066-5070.[25] N. Shao, J.Y. Jin, S.M. Cheung, et al., A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. 118(2006) 5066-5070.
-
[26] X.L. Pei, H.Y. Tian, W.B. Zhang, A.M. Brouwer, J.H. Qian, Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination, Analyst 139(2014) 5290-5296.[26] X.L. Pei, H.Y. Tian, W.B. Zhang, A.M. Brouwer, J.H. Qian, Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination, Analyst 139(2014) 5290-5296.
-
[27] H.Y. Tian, J.H. Qian, Q. Sun, et al., A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution, Analyst 139(2014) 3373-3377.[27] H.Y. Tian, J.H. Qian, Q. Sun, et al., A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution, Analyst 139(2014) 3373-3377.
-
[28] H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to a,b-unsaturated ketone, Anal. Chim. Acta 788(2013) 165-170.[28] H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to a,b-unsaturated ketone, Anal. Chim. Acta 788(2013) 165-170.
-
[29] G.J. Kim, K. Lee, H. Kwon, H.T. Kim, Ratiometric fluorescence imaging of cellular glutathione, Org. Lett. 13(2011) 2799-2801.[29] G.J. Kim, K. Lee, H. Kwon, H.T. Kim, Ratiometric fluorescence imaging of cellular glutathione, Org. Lett. 13(2011) 2799-2801.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1044
- HTML全文浏览量: 3