Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters

Guang-Ming Nan Wei Liu

Citation:  Guang-Ming Nan, Wei Liu. Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters[J]. Chinese Chemical Letters, 2015, 26(10): 1289-1292. doi: 10.1016/j.cclet.2015.06.015 shu

Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters

    通讯作者: Guang-Ming Nan,
  • 基金项目:

    The work was financially supported by the Opening Project of Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region (No. 2014YSHXZD01). (No. 2014YSHXZD01)

摘要: A simple and metal-free method has been developed for the construction of quinoline-2, 4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxylate, and α-ketoesters. The present protocol provides a convenient and attractive approach to various quinoline-2, 4-carboxylates in moderate to good yields with excellent functional group tolerance.

English

  • 
    1. [1] A. Dondoni, A. Massi, Design and synthesis of new classes of heterocyclic Cglycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs), Acc. Chem. Res. 39(2006) 451-463.[1] A. Dondoni, A. Massi, Design and synthesis of new classes of heterocyclic Cglycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs), Acc. Chem. Res. 39(2006) 451-463.

    2. [2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109(2009) 4439-4486.[2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109(2009) 4439-4486.

    3. [3] V. Estevez, M. Villacampa, J.C. Menendez, Multicomponent reactions for the synthesis of pyrroles, Chem. Soc. Rev. 39(2010) 4402-4421.[3] V. Estevez, M. Villacampa, J.C. Menendez, Multicomponent reactions for the synthesis of pyrroles, Chem. Soc. Rev. 39(2010) 4402-4421.

    4. [4] S. Brauch, S.S. Berkela, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962.[4] S. Brauch, S.S. Berkela, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962.

    5. [5] N. Christinat, R. Scopelliti, K. Severin, Multicomponent assembly of boronic acid based macrocycles and cages, Angew. Chem. Int. Ed. 47(2008) 1848-1852.[5] N. Christinat, R. Scopelliti, K. Severin, Multicomponent assembly of boronic acid based macrocycles and cages, Angew. Chem. Int. Ed. 47(2008) 1848-1852.

    6. [6] E. Ruijter, R. Scheffelaar, R.V. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246.[6] E. Ruijter, R. Scheffelaar, R.V. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246.

    7. [7] C. Portela, C.M.M. Afonso, M.M.M. Pinta, M.J. Ramos, Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite, Bioorg. Med. Chem. 12(2004) 3313-3321.[7] C. Portela, C.M.M. Afonso, M.M.M. Pinta, M.J. Ramos, Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite, Bioorg. Med. Chem. 12(2004) 3313-3321.

    8. [8] A.A. Joshi, C.L. Viswanathan, Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials, Bioorg. Med. Chem. Lett. 16(2006) 2613-2617.[8] A.A. Joshi, C.L. Viswanathan, Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials, Bioorg. Med. Chem. Lett. 16(2006) 2613-2617.

    9. [9] P. Narender, U. Srinivas, M. Ravinder, et al., Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity, Bioorg. Med. Chem. 14(2006) 4600-4609.[9] P. Narender, U. Srinivas, M. Ravinder, et al., Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity, Bioorg. Med. Chem. 14(2006) 4600-4609.

    10. [10] S.W. Elmore, M.J. Coghlan, D.D. Anderson, et al., Nonsteroidal selective glucocorticoid modulators:the effect of C-5 alkyl substitution on the transcriptional activation/repression profile of 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano[3,4-f] quinolines, J. Med. Chem. 44(2001) 4481-4491.[10] S.W. Elmore, M.J. Coghlan, D.D. Anderson, et al., Nonsteroidal selective glucocorticoid modulators:the effect of C-5 alkyl substitution on the transcriptional activation/repression profile of 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano[3,4-f] quinolines, J. Med. Chem. 44(2001) 4481-4491.

    11. [11] S. Vangapamdu, M. Jain, R. Jain, S. Kaur, P.P. Singh, Ring-substituted quinolines as potential anti-tuberculosis agents, Bioorg. Med. Chem. 12(2004) 2501-2508.[11] S. Vangapamdu, M. Jain, R. Jain, S. Kaur, P.P. Singh, Ring-substituted quinolines as potential anti-tuberculosis agents, Bioorg. Med. Chem. 12(2004) 2501-2508.

    12. [12] F. Zouhiri, D. Desmaele, J. D'Angelo, et al., HIV-1 replication inhibitors of the styrylquinoline class:incorporation of a masked diketo acid pharmacophore, Tetrahedron Lett. 42(2001) 8189-8192.[12] F. Zouhiri, D. Desmaele, J. D'Angelo, et al., HIV-1 replication inhibitors of the styrylquinoline class:incorporation of a masked diketo acid pharmacophore, Tetrahedron Lett. 42(2001) 8189-8192.

    13. [13] A. Perzyna, F. Klupsch, R. Houssin, et al., New benzo[5,6] pyrrolizino[1,2-b]quinolines as cytotoxic agents, Bioorg. Med. Chem. Lett. 14(2004) 2363-2365.[13] A. Perzyna, F. Klupsch, R. Houssin, et al., New benzo[5,6] pyrrolizino[1,2-b]quinolines as cytotoxic agents, Bioorg. Med. Chem. Lett. 14(2004) 2363-2365.

    14. [14] L. Kaczmarek, W. Peczynska-Czoch, J. Osiadacz, et al., Catalytic mechanism of KDO8P synthase:synthesis and evaluation of a putative reaction intermediate, Bioorg. Med. Chem. Lett. 7(1999) 2457-2462.[14] L. Kaczmarek, W. Peczynska-Czoch, J. Osiadacz, et al., Catalytic mechanism of KDO8P synthase:synthesis and evaluation of a putative reaction intermediate, Bioorg. Med. Chem. Lett. 7(1999) 2457-2462.

    15. [15] C.N. Carrigan, R.D. Bartlett, C.S. Esslinger, et al., Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport, J. Med. Chem. 45(2002) 2260-2276.[15] C.N. Carrigan, R.D. Bartlett, C.S. Esslinger, et al., Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport, J. Med. Chem. 45(2002) 2260-2276.

    16. [16] C.N. Carrigan, C.S. Esslinger, R.D. Bartlett, R.J. Bridges, C.M. Thompson, In search of new chemical entities with spermicidal and anti-HIV activities, Bioorg. Med. Chem. 7(1999) 2607-2612.[16] C.N. Carrigan, C.S. Esslinger, R.D. Bartlett, R.J. Bridges, C.M. Thompson, In search of new chemical entities with spermicidal and anti-HIV activities, Bioorg. Med. Chem. 7(1999) 2607-2612.

    17. [17] E.J. Corey, A. Tramontano, Total synthesis of the auinonoid alcohol dehydrogenase coenzyme (1) of methylotrophic bacteria, J. Am. Chem. Soc. 103(1981) 5599-5600.[17] E.J. Corey, A. Tramontano, Total synthesis of the auinonoid alcohol dehydrogenase coenzyme (1) of methylotrophic bacteria, J. Am. Chem. Soc. 103(1981) 5599-5600.

    18. [18] Y. Laras, V. Hugues, Y. Chandrasekaran, et al., Synthesis of quinoline dicarboxylic esters as biocompatible fluorescent tags, J. Org. Chem. 77(2012) 8294-8302.[18] Y. Laras, V. Hugues, Y. Chandrasekaran, et al., Synthesis of quinoline dicarboxylic esters as biocompatible fluorescent tags, J. Org. Chem. 77(2012) 8294-8302.

    19. [19] S. Itoh, Y. Fukui, S. Haranou, et al., Synthesis and characterization of dimethyl 9,10-dihydro-9,10-dioxobenzo[f]quinoline-2,4-dicarboxylate. effect of the pyrrole nucleus on the reactivity of coenzyme PQQ, J. Org. Chem. 57(1992) 4452-4457.[19] S. Itoh, Y. Fukui, S. Haranou, et al., Synthesis and characterization of dimethyl 9,10-dihydro-9,10-dioxobenzo[f]quinoline-2,4-dicarboxylate. effect of the pyrrole nucleus on the reactivity of coenzyme PQQ, J. Org. Chem. 57(1992) 4452-4457.

    20. [20] R.W. Carling, P.D. Leeson, A.M. Moseley, et al., 2-Carboxytetrahydroquinolines. conformational and stereochemical requirements for antagonism of the glycine site on the N-methyl-D-aspartate (NMDA) receptor, J. Med. Chem. 35(1992) 1942-1953.[20] R.W. Carling, P.D. Leeson, A.M. Moseley, et al., 2-Carboxytetrahydroquinolines. conformational and stereochemical requirements for antagonism of the glycine site on the N-methyl-D-aspartate (NMDA) receptor, J. Med. Chem. 35(1992) 1942-1953.

    21. [21] S. Itoh, J. Kato, T. Inoue, et al., Syntheses of pyrroloquinoline quinone derivatives:model compounds of a novel coenzyme PQQ (methoxatin), Synthesis (1987) 1067-1071.[21] S. Itoh, J. Kato, T. Inoue, et al., Syntheses of pyrroloquinoline quinone derivatives:model compounds of a novel coenzyme PQQ (methoxatin), Synthesis (1987) 1067-1071.

    22. [22] F. Palacios, J. Vicario, J.M. de los Santos, D. Aparicio, Selective 1,2- vs 1,4-addition of N-arylphosphazenes to α,β-unsaturated α-ketoesters. synthesis of quinolinecarboxylates, Heterocycles 70(2006) 261-270.[22] F. Palacios, J. Vicario, J.M. de los Santos, D. Aparicio, Selective 1,2- vs 1,4-addition of N-arylphosphazenes to α,β-unsaturated α-ketoesters. synthesis of quinolinecarboxylates, Heterocycles 70(2006) 261-270.

    23. [23] W. Wei, J. Wen, D. Yang, et al., Iron-catalyzed three-component tandem process:a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters, Tetrahedron 69(2013) 10747-10751.[23] W. Wei, J. Wen, D. Yang, et al., Iron-catalyzed three-component tandem process:a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters, Tetrahedron 69(2013) 10747-10751.

    24. [24] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, The effect of iodine on the peroxidation of carbonyl compounds, J. Org. Chem. 72(2007) 6534-6540.[24] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, The effect of iodine on the peroxidation of carbonyl compounds, J. Org. Chem. 72(2007) 6534-6540.

    25. [25] R. Varala, S. Nuvula, S.R. Adapa, Molecular iodine-catalyzed facile procedure for Nboc protection of amines, J. Org. Chem. 71(2006) 8283-8286.[25] R. Varala, S. Nuvula, S.R. Adapa, Molecular iodine-catalyzed facile procedure for Nboc protection of amines, J. Org. Chem. 71(2006) 8283-8286.

    26. [26] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, Iodine as a catalyst for efficient conversion of ketones to gem-dihydroperoxides by aqueous hydrogen peroxide, Org. Lett. 8(2006) 2491-2944.[26] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, Iodine as a catalyst for efficient conversion of ketones to gem-dihydroperoxides by aqueous hydrogen peroxide, Org. Lett. 8(2006) 2491-2944.

    27. [27] M. Jereb, D. Vražič, M. Zupan, Iodine-catalyzed transformation of molecules containing oxygen functional groups, Tetrahedron 67(2011) 1355-1387.[27] M. Jereb, D. Vražič, M. Zupan, Iodine-catalyzed transformation of molecules containing oxygen functional groups, Tetrahedron 67(2011) 1355-1387.

    28. [28] T. Nobuta, N. Tada, A. Fujiya, et al., Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide, Org. Lett. 15(2013) 574-577.[28] T. Nobuta, N. Tada, A. Fujiya, et al., Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide, Org. Lett. 15(2013) 574-577.

    29. [29] X.S. Wang, Q. Li, C.S. Yao, S.J. Tu, An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalen-2-amine, and cyclic ketone, Eur. J. Org. Chem. 20(2008) 3513-3518.[29] X.S. Wang, Q. Li, C.S. Yao, S.J. Tu, An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalen-2-amine, and cyclic ketone, Eur. J. Org. Chem. 20(2008) 3513-3518.

    30. [30] D. Kataki, P. Phukan, Iodine-catalyzed one-pot three-component synthesis of homoallyl benzyl ethers from aldehydes, Tetrahedron Lett. 50(2009) 1958-1960.[30] D. Kataki, P. Phukan, Iodine-catalyzed one-pot three-component synthesis of homoallyl benzyl ethers from aldehydes, Tetrahedron Lett. 50(2009) 1958-1960.

    31. [31] J. Jaratjaroonphong, S. Krajangsri, V. Reutrakul, Iodine-catalyzed, one-pot, threecomponent aza-Friedel-Crafts reaction of electron-rich arenes with aldehyde/carbamate combinations, Tetrahedron Lett. 53(2012) 2476-2479.[31] J. Jaratjaroonphong, S. Krajangsri, V. Reutrakul, Iodine-catalyzed, one-pot, threecomponent aza-Friedel-Crafts reaction of electron-rich arenes with aldehyde/carbamate combinations, Tetrahedron Lett. 53(2012) 2476-2479.

    32. [32] K.P. Kumar, S. Satyanarayana, P.L. Reddy, et al., Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions, Tetrahedron Lett. 53(2012) 1738-1741.[32] K.P. Kumar, S. Satyanarayana, P.L. Reddy, et al., Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions, Tetrahedron Lett. 53(2012) 1738-1741.

    33. [33] B. Dai, Y. Duan, X. Liu, et al., Iodine catalyzed one-pot multi-component reaction to CF3-containing spiro[indene-2,30-piperidine] derivatives, J. Fluor. Chem. 133(2012) 127-133.[33] B. Dai, Y. Duan, X. Liu, et al., Iodine catalyzed one-pot multi-component reaction to CF3-containing spiro[indene-2,30-piperidine] derivatives, J. Fluor. Chem. 133(2012) 127-133.

    34. [34] B.Q. Zhang, Y. Luo, Y.H. He, Z. Guan, Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via cascade reaction of α-ketoesters with arylamines mediated by iodine, Tetrahedron 70(2014) 1961-1966.[34] B.Q. Zhang, Y. Luo, Y.H. He, Z. Guan, Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via cascade reaction of α-ketoesters with arylamines mediated by iodine, Tetrahedron 70(2014) 1961-1966.

    35. [35] A. Alizadeh, J. Mokhtari, Synthesis of spiro[indoline-3,40-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine, Tetrahedron 69(2013) 6313-6316.[35] A. Alizadeh, J. Mokhtari, Synthesis of spiro[indoline-3,40-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine, Tetrahedron 69(2013) 6313-6316.

    36. [36] A. Alizadeh, J. Mokhtari, Synthesis of 4-(1,3-dioxo-2,3-dihydro-1H-2-indenyl) substituted 1-benzylpyrrole-3-carboxylates via a tandem four-component reaction, C.R. Chimie 16(2013) 105-108.[36] A. Alizadeh, J. Mokhtari, Synthesis of 4-(1,3-dioxo-2,3-dihydro-1H-2-indenyl) substituted 1-benzylpyrrole-3-carboxylates via a tandem four-component reaction, C.R. Chimie 16(2013) 105-108.

    37. [37] X.F. Lin, S.L. Cui, Y.G. Wang, Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes, Tetrahedron Lett. 47(2006) 3127-3130.[37] X.F. Lin, S.L. Cui, Y.G. Wang, Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes, Tetrahedron Lett. 47(2006) 3127-3130.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  988
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2015-06-17
  • 收稿日期:  2015-04-03
  • 网络出版日期:  2015-05-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章