Missing in total OH reactivity of VOCs from gasoline evaporation

Ying Wu Yu-Dong Yang Min Shao Si-Hua Lu

Citation:  Ying Wu, Yu-Dong Yang, Min Shao, Si-Hua Lu. Missing in total OH reactivity of VOCs from gasoline evaporation[J]. Chinese Chemical Letters, 2015, 26(10): 1246-1248. doi: 10.1016/j.cclet.2015.05.047 shu

Missing in total OH reactivity of VOCs from gasoline evaporation

    通讯作者: Min Shao,
  • 基金项目:

    This work was funded by the National Natural Science Foundation (Nos. 41125018, 41330635). (Nos. 41125018, 41330635)

摘要: Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds (VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method (CRM) using proton transfer reaction mass spectrometer (PTR-MS). Compositions of 56 PAMS (photochemical assessment monitoring station) nonmethane hydrocarbons (NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57±4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. Wesuggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.

English

  • 
    1. [1] J. Williams, Organic trace gases in the atmosphere:an overview, Environ. Chem. 1(2004) 125.[1] J. Williams, Organic trace gases in the atmosphere:an overview, Environ. Chem. 1(2004) 125.

    2. [2] Z.B. Yuan, A.K.H. Lau, M. Shao, et al., Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing, J. Geophys. Res. Atmos. 114(2009) D00G15.[2] Z.B. Yuan, A.K.H. Lau, M. Shao, et al., Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing, J. Geophys. Res. Atmos. 114(2009) D00G15.

    3. [3] Y. Liu, M. Shao, S.H. Lu, et al., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China:part II, Atmos. Environ. 42(2008) 6261-6274.[3] Y. Liu, M. Shao, S.H. Lu, et al., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China:part II, Atmos. Environ. 42(2008) 6261-6274.

    4. [4] X. Yue, Y. Wu, J.M. Hao, et al., Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energy Policy 79(2015) 87-98.[4] X. Yue, Y. Wu, J.M. Hao, et al., Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energy Policy 79(2015) 87-98.

    5. [5] X.R. Ren, H. Harder, M. Martinez, et al., HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37(2003) 3627-3637.[5] X.R. Ren, H. Harder, M. Martinez, et al., HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37(2003) 3627-3637.

    6. [6] A. Yoshino, Y. Sadanaga, K. Watanabe, et al., Measurement of total OH reactivity by laser-induced pump and probe technique-comprehensive observations in the urban atmosphere of Tokyo, Atmos. Environ. 40(2006) 7869-7881.[6] A. Yoshino, Y. Sadanaga, K. Watanabe, et al., Measurement of total OH reactivity by laser-induced pump and probe technique-comprehensive observations in the urban atmosphere of Tokyo, Atmos. Environ. 40(2006) 7869-7881.

    7. [7] C. Dolgorouky, V. Gros, R. Sarda-Esteve, et al., Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign, Atmos. Chem. Phys. 12(2012) 9593-9612.[7] C. Dolgorouky, V. Gros, R. Sarda-Esteve, et al., Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign, Atmos. Chem. Phys. 12(2012) 9593-9612.

    8. [8] Y. Nakashima, N. Kamei, S. Kobayashi, Y. Kajiia, Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer, Atmos. Environ. 44(2010) 468-475.[8] Y. Nakashima, N. Kamei, S. Kobayashi, Y. Kajiia, Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer, Atmos. Environ. 44(2010) 468-475.

    9. [9] X.L. Liu, L.M. Zeng, S.H. Lu, et al., Online monitoring system for volatile organic compounds in the atmosphere, Acta Sci. Circumstan. 29(2009) 2471-2477.[9] X.L. Liu, L.M. Zeng, S.H. Lu, et al., Online monitoring system for volatile organic compounds in the atmosphere, Acta Sci. Circumstan. 29(2009) 2471-2477.

    10. [10] M. Wang, L.M. Zeng, S.H. Lu, et al., Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Anal. Methods 6(2014) 9424-9434.[10] M. Wang, L.M. Zeng, S.H. Lu, et al., Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Anal. Methods 6(2014) 9424-9434.

    11. [11] V. Sinha, J. Williams, J.N. Crowley, J. Lelieveld, The comparative reactivity method-a new tool to measure total OH reactivity in ambient air, Atmos. Chem. Phys. 8(2008) 2213-2227.[11] V. Sinha, J. Williams, J.N. Crowley, J. Lelieveld, The comparative reactivity method-a new tool to measure total OH reactivity in ambient air, Atmos. Chem. Phys. 8(2008) 2213-2227.

    12. [12] R.A. Harley, S.C. Coulter-Burke, T.S. Yeung, Relating liquid fuel and headspace vapor composition for California reformulated gasoline samples containing ethanol, Environ. Sci. Technol. 34(2000) 4088-4094.[12] R.A. Harley, S.C. Coulter-Burke, T.S. Yeung, Relating liquid fuel and headspace vapor composition for California reformulated gasoline samples containing ethanol, Environ. Sci. Technol. 34(2000) 4088-4094.

    13. [13] R. Atkinson, D.L. Baulch, R.A. Cox, et al., Evaluated kinetic and photochemical data for atmospheric chemistry:volume II-gas phase reactions of organic species, Atmos. Chem. Phys. 6(2006) 3625-4055.[13] R. Atkinson, D.L. Baulch, R.A. Cox, et al., Evaluated kinetic and photochemical data for atmospheric chemistry:volume II-gas phase reactions of organic species, Atmos. Chem. Phys. 6(2006) 3625-4055.

    14. [14] Y. Liu, M. Shao, L.L. Fu, et al., Source profiles of volatile organic compounds (VOCs) measured in China:Part I, Atmos. Environ. 42(2008) 6247-6260.[14] Y. Liu, M. Shao, L.L. Fu, et al., Source profiles of volatile organic compounds (VOCs) measured in China:Part I, Atmos. Environ. 42(2008) 6247-6260.

    15. [15] Y.L. Zhang, X.M. Wang, Z. Zhang, et al., Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ. 79(2013) 110-118.[15] Y.L. Zhang, X.M. Wang, Z. Zhang, et al., Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ. 79(2013) 110-118.

    16. [16] S.H. Lu, Y.H. Bai, G.S. Zhang, J. Ma, Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission, Univ. Peking 39(2003) 507-511.[16] S.H. Lu, Y.H. Bai, G.S. Zhang, J. Ma, Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission, Univ. Peking 39(2003) 507-511.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  982
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2015-06-04
  • 收稿日期:  2015-04-07
  • 网络出版日期:  2015-05-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章