Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles

Farid Moeinpour Amir Khojastehnezhad

Citation:  Farid Moeinpour, Amir Khojastehnezhad. Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles[J]. Chinese Chemical Letters, 2015, 26(5): 575-579. doi: 10.1016/j.cclet.2015.01.033 shu

Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles

    通讯作者: Farid Moeinpour,
摘要: Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.

English

  • 
    1. [1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.[1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.

    2. [2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.[2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    3. [3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.[3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.

    4. [4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.[4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.

    5. [5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.[5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.

    6. [6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.[6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.

    7. [7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.[7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.

    8. [8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.[8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.

    9. [9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.[9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.

    10. [10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.[10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.

    11. [11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.[11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.

    12. [12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.[12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.

    13. [13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.[13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.

    14. [14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.[14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.

    15. [15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.[15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.

    16. [16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.[16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.

    17. [17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.[17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.

    18. [18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.[18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.

    19. [19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.[19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.

    20. [20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.[20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.

    21. [21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.[21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.

    22. [22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.[22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.

    23. [23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.[23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.

    24. [24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.[24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.

    25. [25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.[25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.

    26. [26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.[26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  959
  • HTML全文浏览量:  24
文章相关
  • 发布日期:  2015-02-07
  • 收稿日期:  2014-11-06
  • 网络出版日期:  2015-01-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章