Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4

Dariush Khalili

Citation:  Dariush Khalili. Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4[J]. Chinese Chemical Letters, 2015, 26(5): 547-552. doi: 10.1016/j.cclet.2015.01.007 shu

Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4

    通讯作者: Dariush Khalili,
摘要: A new method employing magnetic nanoparticles Fe3O4 as a catalyst and H2O2 as a green oxidant is developed for the oxidative thiocyanation of aromatic amines, anisols and activated phenols with high yields under mild reaction conditions. The catalyst could be easily recovered from the reaction mixture using an external magnet and reused in several reaction cycles without loss of activity.

English

  • 
    1. [1] (a) Y. Cui, P.E. Floreancig, Synthesis of sulfur-containing heterocycles through oxidative carbon-hydrogen bond functionalization, Org. Lett. 14 (2012) 1720- 1723;[1] (a) Y. Cui, P.E. Floreancig, Synthesis of sulfur-containing heterocycles through oxidative carbon-hydrogen bond functionalization, Org. Lett. 14 (2012) 1720- 1723;

    2. [2]

      (b) I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev. 111 (2011) 1596-1636;(b) I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev. 111 (2011) 1596-1636;

    3. [3]

      (c) P. Bichler, J. Love, in: A. Vigalok (Ed.), Topics of Organometallic Chemistry, vol. 31, Springer, Heidelberg, 2010, pp. 39-64.(c) P. Bichler, J. Love, in: A. Vigalok (Ed.), Topics of Organometallic Chemistry, vol. 31, Springer, Heidelberg, 2010, pp. 39-64.

    4. [2] (a) For a review see: R.G. Guy, in: S. Patai (Ed.), The Chemistry of the Cyanates and their Thio Derivatives, Wiley Interscience, New York, 1977, p. 819;[2] (a) For a review see: R.G. Guy, in: S. Patai (Ed.), The Chemistry of the Cyanates and their Thio Derivatives, Wiley Interscience, New York, 1977, p. 819;

    5. [5]

      (b) A.W. Erian, S.M. Sherif, The chemistry of thiocyanic esters, Tetrahedron 55 (1999) 7957-8024.(b) A.W. Erian, S.M. Sherif, The chemistry of thiocyanic esters, Tetrahedron 55 (1999) 7957-8024.

    6. [3] (a) M. Benn, Glucosinolates, Pure Appl. Chem. 49 (1977) 197-210;[3] (a) M. Benn, Glucosinolates, Pure Appl. Chem. 49 (1977) 197-210;

    7. [7]

      (b) A.T. Pham, T. Ichida, W.Y. Yoshida, et al., Two marine sesquiterpene thiocyanates, Tetrahedron Lett. 32 (1991) 4843-4846.(b) A.T. Pham, T. Ichida, W.Y. Yoshida, et al., Two marine sesquiterpene thiocyanates, Tetrahedron Lett. 32 (1991) 4843-4846.

    8. [4] (a) B.L. Leblanc, B.C. Jursic, Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis, Synth. Commun. 28 (1998) 3591-3599;[4] (a) B.L. Leblanc, B.C. Jursic, Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis, Synth. Commun. 28 (1998) 3591-3599;

    9. [9]

      (b) A.A. Newman, Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, 1st ed., Academic Press, 1975;(b) A.A. Newman, Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, 1st ed., Academic Press, 1975;

    10. [10]

      (c) D.L. Mackinnon, A.P. Farrel, The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus kisutch): sublethal toxicity testing, Environ. Toxicol. Chem. 11 (1992) 1541-1548.(c) D.L. Mackinnon, A.P. Farrel, The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus kisutch): sublethal toxicity testing, Environ. Toxicol. Chem. 11 (1992) 1541-1548.

    11. [5] (a) Y.T. Lee, S.Y. Choi, Y.K. Chung, Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett. 48 (2007) 5673-5677;[5] (a) Y.T. Lee, S.Y. Choi, Y.K. Chung, Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett. 48 (2007) 5673-5677;

    12. [12]

      (b) Z.H. Zhang, L.S. Liebeskind, Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate: a cyanide-free cyanation of boronic acids, Org. Lett. 8 (2006) 4331-4333;(b) Z.H. Zhang, L.S. Liebeskind, Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate: a cyanide-free cyanation of boronic acids, Org. Lett. 8 (2006) 4331-4333;

    13. [13]

      (c) R. Riemschneider, Thiocarbamates and related compounds: X. A new reaction of thiocyanates, J. Am. Chem. Soc. 78 (1956) 844-847;(c) R. Riemschneider, Thiocarbamates and related compounds: X. A new reaction of thiocyanates, J. Am. Chem. Soc. 78 (1956) 844-847;

    14. [14]

      (d) T. Billard, B.R. Langlois, M. Medebielle, Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates: a new simple access to heteroaryl-SCF2R derivatives, Tetrahedron Lett. 42 (2001) 3463-3465;(d) T. Billard, B.R. Langlois, M. Medebielle, Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates: a new simple access to heteroaryl-SCF2R derivatives, Tetrahedron Lett. 42 (2001) 3463-3465;

    15. [15]

      (e) F.D. Toste, F. Laronde, W.J. Still, Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett. 36 (1995) 2949-2952;(e) F.D. Toste, F. Laronde, W.J. Still, Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett. 36 (1995) 2949-2952;

    16. [16]

      (f) M.S. Grant, H.R. Snyder, Thiocyanation of indole: some reactions of 3-thiocyanoindole, J. Am. Chem. Soc. 82 (1960) 2742-2744;(f) M.S. Grant, H.R. Snyder, Thiocyanation of indole: some reactions of 3-thiocyanoindole, J. Am. Chem. Soc. 82 (1960) 2742-2744;

    17. [17]

      (g) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Thoma, Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent, J. Org. Chem. 60 (1995) 7144-7148.(g) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Thoma, Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent, J. Org. Chem. 60 (1995) 7144-7148.

    18. [6] S. Sajjadifar, O. Louie, Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water, J. Chem. (2013), article ID: 674946.[6] S. Sajjadifar, O. Louie, Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water, J. Chem. (2013), article ID: 674946.

    19. [7] V.A. Patapov, K.A. Volkova, D.A. Malinovich, et al., Thiocyanation of 4,5,6,7- tetrahydroindole, Russ. J. Org. Chem. 49 (2013) 619-620.[7] V.A. Patapov, K.A. Volkova, D.A. Malinovich, et al., Thiocyanation of 4,5,6,7- tetrahydroindole, Russ. J. Org. Chem. 49 (2013) 619-620.

    20. [8] M.A. Karimi Zarchi, N. Ebrahimi, An efficient and simple method for diazotization- thiocyanation of aryl amine using cross-linked poly (4-vinylpyridine) supported thiocyanate ion, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 1226-1235.[8] M.A. Karimi Zarchi, N. Ebrahimi, An efficient and simple method for diazotization- thiocyanation of aryl amine using cross-linked poly (4-vinylpyridine) supported thiocyanate ion, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 1226-1235.

    21. [9] (a) M.A. Zolfigol, A. Khazaei, M. Mokhlesi, et al., Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 295-304;[9] (a) M.A. Zolfigol, A. Khazaei, M. Mokhlesi, et al., Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 295-304;

    22. [22]

      (b) A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F. Derakhshan Panah, S. Sajadifar, Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta 95 (2012) 106-114;(b) A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F. Derakhshan Panah, S. Sajadifar, Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta 95 (2012) 106-114;

    23. [23]

      (c) A. Khazaei, M.A. Zolfigol, M. Safaiee, et al., Silica-bonded vanadic acid[SiO2-VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature, Catal. Commun. 26 (2012) 34-38.(c) A. Khazaei, M.A. Zolfigol, M. Safaiee, et al., Silica-bonded vanadic acid[SiO2-VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature, Catal. Commun. 26 (2012) 34-38.

    24. [10] L. Wu, S. Chao, X. Wang, F. Yan, Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 304-310.[10] L. Wu, S. Chao, X. Wang, F. Yan, Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 304-310.

    25. [11] Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, Microwaveassisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media, J. Iran. Chem. Soc. 8 (2011) 292-297.[11] Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, Microwaveassisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media, J. Iran. Chem. Soc. 8 (2011) 292-297.

    26. [12] O. Parkash, H. Kaur, R. Pundeer, R.S. Dhillon, S.P. Singh, An improved iodine(III) mediated method for thiocyanation of 2-arylindan-1,3-diones, phenols, and anilines, Synth. Commun. 33 (2003) 4037-4042.[12] O. Parkash, H. Kaur, R. Pundeer, R.S. Dhillon, S.P. Singh, An improved iodine(III) mediated method for thiocyanation of 2-arylindan-1,3-diones, phenols, and anilines, Synth. Commun. 33 (2003) 4037-4042.

    27. [13] X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines, Tetrahedron Lett. 50 (2009) 347-349.[13] X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines, Tetrahedron Lett. 50 (2009) 347-349.

    28. [14] (a) H.R. Memarian, I. Mohammadpoor-Baltork, K. Nikoofar, DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds, Can. J. Chem. 85 (2007) 930-937;[14] (a) H.R. Memarian, I. Mohammadpoor-Baltork, K. Nikoofar, DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds, Can. J. Chem. 85 (2007) 930-937;

    29. [29]

      (b) H.R. Memraian, I. Mohammadpoor-Baltork, K. Nikoofar, Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ, Ultrason. Sonochem. 15 (2008) 456-462.(b) H.R. Memraian, I. Mohammadpoor-Baltork, K. Nikoofar, Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ, Ultrason. Sonochem. 15 (2008) 456-462.

    30. [15] (a) L. Fotouhi, K. Nikoofar, Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett. 54 (2013) 2903- 2905;[15] (a) L. Fotouhi, K. Nikoofar, Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett. 54 (2013) 2903- 2905;

    31. [31]

      (b) A. Gitkis, J.Y. Becker, A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem. 593 (2006) 29-33;(b) A. Gitkis, J.Y. Becker, A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem. 593 (2006) 29-33;

    32. [32]

      (c) A. Gitkis, J.Y. Becker, Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta 55 (2010) 5854-5859.(c) A. Gitkis, J.Y. Becker, Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta 55 (2010) 5854-5859.

    33. [16] B. Akhlaghinia, A.R. Pourali, M. Rahmani, Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun. 42 (2012) 1184.[16] B. Akhlaghinia, A.R. Pourali, M. Rahmani, Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun. 42 (2012) 1184.

    34. [17] (a) X.F. Wu, A. Petrosyan, T.V. Ghochikyan, A.S. Saghyan, P. Langer, Metal-free oxidation of benzyl amines to imines, Tetrahedron Lett. 54 (2013) 3158-3159;[17] (a) X.F. Wu, A. Petrosyan, T.V. Ghochikyan, A.S. Saghyan, P. Langer, Metal-free oxidation of benzyl amines to imines, Tetrahedron Lett. 54 (2013) 3158-3159;

    35. [35]

      (b) R. Rajabi, A. Pineda, S. Naserian, et al., Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates, Green Chem. 15 (2013) 1232-1237;(b) R. Rajabi, A. Pineda, S. Naserian, et al., Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates, Green Chem. 15 (2013) 1232-1237;

    36. [36]

      (c) L. Bedrač, J. Iskra, Iodine(I) reagents in hydrochloric acid-catalyzed oxidative iodination of aromatic compounds by hydrogen peroxide and iodine, Adv. Synth. Catal. 355 (2013) 1243-1248;(c) L. Bedrač, J. Iskra, Iodine(I) reagents in hydrochloric acid-catalyzed oxidative iodination of aromatic compounds by hydrogen peroxide and iodine, Adv. Synth. Catal. 355 (2013) 1243-1248;

    37. [37]

      (d) A. Rostami, Y. Navasi, D. Moradi, A. Ghorbani-Choghamarani, DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions, Catal. Commun. 43 (2014) 16-20;(d) A. Rostami, Y. Navasi, D. Moradi, A. Ghorbani-Choghamarani, DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions, Catal. Commun. 43 (2014) 16-20;

    38. [38]

      (e) J. Ju, Y.J. Li, J.R. Gao, et al., High selectively bromination of toluene derivatives by the H2O2-HBr system, Chin. Chem. Lett. 22 (2011) 382-384;(e) J. Ju, Y.J. Li, J.R. Gao, et al., High selectively bromination of toluene derivatives by the H2O2-HBr system, Chin. Chem. Lett. 22 (2011) 382-384;

    39. [39]

      (f) H.Y. Guo, J.C. Li, Y.L. Sheng, A simple and efficient synthesis of 2-substituted benzothiazoles catalysed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.(f) H.Y. Guo, J.C. Li, Y.L. Sheng, A simple and efficient synthesis of 2-substituted benzothiazoles catalysed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.

    40. [18] (a) Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167-R181;[18] (a) Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167-R181;

    41. [41]

      (b) A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496;(b) A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496;

    42. [42]

      (c) T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.(c) T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.

    43. [19] (a) V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075;[19] (a) V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075;

    44. [44]

      (b) Y. Li, Y.J. Kim, A.Y. Kim, et al., Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts, Chem. Mater. 23 (2011) 5398-5403;(b) Y. Li, Y.J. Kim, A.Y. Kim, et al., Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts, Chem. Mater. 23 (2011) 5398-5403;

    45. [45]

      (c) J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc. 132 (2010) 5326-5327;(c) J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc. 132 (2010) 5326-5327;

    46. [46]

      (d) N. Panda, A.K. Jena, S. Mohapatra, Heterogeneous magnetic catalyst for S-arylation reactions, Appl. Catal A: Gen. 433 (2012) 258-264;(d) N. Panda, A.K. Jena, S. Mohapatra, Heterogeneous magnetic catalyst for S-arylation reactions, Appl. Catal A: Gen. 433 (2012) 258-264;

    47. [47]

      (e) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.(e) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.

    48. [20] (a) C. Yang, J. Wu, Y. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141;[20] (a) C. Yang, J. Wu, Y. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141;

    49. [49]

      (b) D. Cantillo, M. Mirhosseini Moghaddam, C.O. Kappe, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem. 78 (2013) 4530-4542;(b) D. Cantillo, M. Mirhosseini Moghaddam, C.O. Kappe, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem. 78 (2013) 4530-4542;

    50. [50]

      (c) T. Alishiri, H.A. Oskooei, M.M. Heravi, Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of α,β-unsaturated heterocyclic and cyclic ketones under solvent-free conditions, Synth. Commun. 43 (2014) 3357-3362;(c) T. Alishiri, H.A. Oskooei, M.M. Heravi, Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of α,β-unsaturated heterocyclic and cyclic ketones under solvent-free conditions, Synth. Commun. 43 (2014) 3357-3362;

    51. [51]

      (d) K. Kamal, S.M. Sajadi, An efficient synthesis of thiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst, Lett. Org. Chem. 10 (2013) 688-692.(d) K. Kamal, S.M. Sajadi, An efficient synthesis of thiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst, Lett. Org. Chem. 10 (2013) 688-692.

    52. [21] (a) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett. 51 (2010) 3508-3510;[21] (a) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett. 51 (2010) 3508-3510;

    53. [53]

      (b) N. Iranpoor, H. Firouzabadi, R. Shahin, D. Khalili, 2,2'-Azobenzthiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate, Synth. Commun. 42 (2012) 2040-2047.(b) N. Iranpoor, H. Firouzabadi, R. Shahin, D. Khalili, 2,2'-Azobenzthiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate, Synth. Commun. 42 (2012) 2040-2047.

    54. [22] For the preparation of nanomagnetic Fe3O4, see: V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol, Green Chem. 11 (2009) 127-131.[22] For the preparation of nanomagnetic Fe3O4, see: V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol, Green Chem. 11 (2009) 127-131.

    55. [23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2,2':6',2"-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes, J. Organomet. Chem. 738 (2013) 41-48.[23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2,2':6',2"-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes, J. Organomet. Chem. 738 (2013) 41-48.

    56. [24] (a) G. Wu, Q. Liu, Y. Shen, W. Wu, L. Wu, Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone, Tetrahedron Lett. 46 (2005) 5831-5834;[24] (a) G. Wu, Q. Liu, Y. Shen, W. Wu, L. Wu, Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone, Tetrahedron Lett. 46 (2005) 5831-5834;

    57. [57]

      (b) U.S. Mahajan, K.G. Akamanchi, Facile method for thiocyanation of activated arenes using iodic acid in combination with ammonium thiocyanate, Synth. Commun. 39 (2009) 2674-2682;(b) U.S. Mahajan, K.G. Akamanchi, Facile method for thiocyanation of activated arenes using iodic acid in combination with ammonium thiocyanate, Synth. Commun. 39 (2009) 2674-2682;

    58. [58]

      (c) B. Das, A.S. Kumar, Efficient thiocyanation of indoles using para-toluene sulfonic acid, Synth. Commun. 40 (2010) 337-341;(c) B. Das, A.S. Kumar, Efficient thiocyanation of indoles using para-toluene sulfonic acid, Synth. Commun. 40 (2010) 337-341;

    59. [59]

      (d) A. Shuji, M. Egi, K. Lio, et al., An efficient p-thiocyanation of phenols and naphtols using a reagent combination of phenyliodine dichloride and lead(II) thiocyanate, Chem. Pharm. Bull. 45 (1997) 1887-1890.(d) A. Shuji, M. Egi, K. Lio, et al., An efficient p-thiocyanation of phenols and naphtols using a reagent combination of phenyliodine dichloride and lead(II) thiocyanate, Chem. Pharm. Bull. 45 (1997) 1887-1890.

    60. [25] (a) M.A. Zolfigol, V. Khakyzadeh, A.H. Moosavi-Zare, et al., Nano-Fe3O4/O2: green, magnetic and reusable catalytic system for the synthesis of benzimidazoles, S. Afr. J. Chem. 65 (2012) 280;[25] (a) M.A. Zolfigol, V. Khakyzadeh, A.H. Moosavi-Zare, et al., Nano-Fe3O4/O2: green, magnetic and reusable catalytic system for the synthesis of benzimidazoles, S. Afr. J. Chem. 65 (2012) 280;

    61. [61]

      (b) R. Parella, N. Srinivasarao, A. Babu, Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: a green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles, Catal. Commun. 29 (2012) 118-121;(b) R. Parella, N. Srinivasarao, A. Babu, Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: a green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles, Catal. Commun. 29 (2012) 118-121;

    62. [62]

      (c) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176;(c) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176;

    63. [63]

      (d) M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, S. Bagherpoor, Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides, J. Mol. Catal. A: Chem. 361 (2012) 68-71;(d) M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, S. Bagherpoor, Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides, J. Mol. Catal. A: Chem. 361 (2012) 68-71;

    64. [64]

      (e) R. Cano, M. Yus, D.J. Ramon, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, Tetrahedron 69 (2013) 7056-7065.(e) R. Cano, M. Yus, D.J. Ramon, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, Tetrahedron 69 (2013) 7056-7065.

    65. [26] (a) I.R.Wilson, G.M. Harris, The oxidation of thiocyanate ion by hydrogen peroxide: I. The pH-independent reaction, J. Am. Chem. Soc. 82 (1960) 4515-4517;[26] (a) I.R.Wilson, G.M. Harris, The oxidation of thiocyanate ion by hydrogen peroxide: I. The pH-independent reaction, J. Am. Chem. Soc. 82 (1960) 4515-4517;

    66. [66]

      (b) J.N. Figlar, D.M. Stanbury, Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution, Inorg. Chem. 39 (2000) 5089-5094;(b) J.N. Figlar, D.M. Stanbury, Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution, Inorg. Chem. 39 (2000) 5089-5094;

    67. [67]

      (c) J.J. Barnett, D.M. Stanbury, Formation of trithiocyanate in the oxidation of aqueous thiocyanate, Inorg. Chem. 41 (2002) 164-166;(c) J.J. Barnett, D.M. Stanbury, Formation of trithiocyanate in the oxidation of aqueous thiocyanate, Inorg. Chem. 41 (2002) 164-166;

    68. [68]

      (d) P. Nagy, K. Lemma, M.T. Ashby, Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution, Inorg. Chem. 46 (2007) 285-292.(d) P. Nagy, K. Lemma, M.T. Ashby, Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution, Inorg. Chem. 46 (2007) 285-292.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  968
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2015-01-15
  • 收稿日期:  2014-07-08
  • 网络出版日期:  2014-12-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章