Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity

Chao Han Yan-Chun Guo Dan-Dan Wang Xing-Jie Dai Feng-Juan Wu Huan-Fei Liu Gui-Fu Dai Jing-Chao Tao

Citation:  Chao Han, Yan-Chun Guo, Dan-Dan Wang, Xing-Jie Dai, Feng-Juan Wu, Huan-Fei Liu, Gui-Fu Dai, Jing-Chao Tao. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity[J]. Chinese Chemical Letters, 2015, 26(5): 534-538. doi: 10.1016/j.cclet.2015.01.006 shu

Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity

    通讯作者: Gui-Fu Dai,
    Jing-Chao Tao,
摘要: A series of novel pyrazole fused heterocyclic derivatives were synthesized via a two-step procedure or a one-pot two step method, and their catalytic DNA cleavage abilities and anti-BVDV activities were also evaluated. The results obtained indicated that compounds 3b-3c could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) to nicked DNA under physiological conditions with high yields via a hydrolytic mechanism. The studies on anti-viral activities against bovine viral diarrhea virus (BVDV) demonstrated that some of the pyrazole derivatives showed pronounced anti-BVDV activity with interesting EC50 values and no significant cytotoxicity. Among them, compound 3l showed the highest antiviral activity (EC50 = 0.12 μmol/L) and was 10 fold more than that of the positive control ribavirin (EC50 = 1.3 μmol/L), which provided a potential candidate for the development of anti-BVDV agents.

English

  • 
    1. [1] F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Artificial metallonucleases, Chem. Commun. 20 (2005) 2540-2548.[1] F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Artificial metallonucleases, Chem. Commun. 20 (2005) 2540-2548.

    2. [2] C.J. Thomas, M.M. McCormick, C. Vialas, et al., Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety, J. Am. Chem. Soc. 124 (2002) 3875-3884.[2] C.J. Thomas, M.M. McCormick, C. Vialas, et al., Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety, J. Am. Chem. Soc. 124 (2002) 3875-3884.

    3. [3] A. Minnock, L.S. Lin, J. Morgan, et al., Sequence-specific DNA cleavage by dipeptides disubstituted with chlorambucil and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid, Bioconjug. Chem. 12 (2001) 870-882.[3] A. Minnock, L.S. Lin, J. Morgan, et al., Sequence-specific DNA cleavage by dipeptides disubstituted with chlorambucil and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid, Bioconjug. Chem. 12 (2001) 870-882.

    4. [4] C.Q. Zhou, Y.L. Lin, J.X. Chen, et al., Facile synthesis of a dimeric dipyrrolepolyamide and synergetic DNA-cleaving activity of its Cu(II) complex, Bioorg. Med. Chem. Lett. 22 (2012) 5853-5856.[4] C.Q. Zhou, Y.L. Lin, J.X. Chen, et al., Facile synthesis of a dimeric dipyrrolepolyamide and synergetic DNA-cleaving activity of its Cu(II) complex, Bioorg. Med. Chem. Lett. 22 (2012) 5853-5856.

    5. [5] M. Pitié, J.D.V. Horn, D. Brion, C.J. Burrows, B. Meunier, Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T. tracts via linkage to a poly- N-methylpyrrole, Bioconjug. Chem. 11 (2000) 892-900.[5] M. Pitié, J.D.V. Horn, D. Brion, C.J. Burrows, B. Meunier, Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T. tracts via linkage to a poly- N-methylpyrrole, Bioconjug. Chem. 11 (2000) 892-900.

    6. [6] M. Pitié, C.J. Burrows, B. Meunier, Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue, Nucleic Acids Res. 28 (2000) 4856-4864.[6] M. Pitié, C.J. Burrows, B. Meunier, Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue, Nucleic Acids Res. 28 (2000) 4856-4864.

    7. [7] (a) S. Roy, P.U. Maheswari, M. Lutz, et al., DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation, Dalton Trans. 48 (2009) 10846-10860;[7] (a) S. Roy, P.U. Maheswari, M. Lutz, et al., DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation, Dalton Trans. 48 (2009) 10846-10860;

    8. [8]

      (b) S. Gama, F. Mendes, F. Marques, et al., Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization. DNA cleavage activity and cytotoxicity, J. Inorg. Biochem. 105 (2011) 637-644.(b) S. Gama, F. Mendes, F. Marques, et al., Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization. DNA cleavage activity and cytotoxicity, J. Inorg. Biochem. 105 (2011) 637-644.

    9. [8] (a) Y. Aiba, J. Sumaoka, M. Komiyama, Artificial DNA cutters for DNA manipulation and genome engineering, Chem. Soc. Rev. 40 (2011) 5657-5668;[8] (a) Y. Aiba, J. Sumaoka, M. Komiyama, Artificial DNA cutters for DNA manipulation and genome engineering, Chem. Soc. Rev. 40 (2011) 5657-5668;

    10. [10]

      (b) J.H. Wen, C.Y. Li, Z.R. Geng, X.Y. Ma, Z.L. Wang, A potent antitumor Zn2+ tetraazamacrocycle complex targeting DNA: the fluorescent recognition, interaction and apoptosis studies, Chem. Commun. 47 (2011) 11330-11332.(b) J.H. Wen, C.Y. Li, Z.R. Geng, X.Y. Ma, Z.L. Wang, A potent antitumor Zn2+ tetraazamacrocycle complex targeting DNA: the fluorescent recognition, interaction and apoptosis studies, Chem. Commun. 47 (2011) 11330-11332.

    11. [9] (a) L. Tjioe, J. Brugger, B. Graham, L. Spiccia, Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants, Inorg. Chem. 50 (2011) 621-635;[9] (a) L. Tjioe, J. Brugger, B. Graham, L. Spiccia, Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants, Inorg. Chem. 50 (2011) 621-635;

    12. [12]

      (b) R. Bonomi, P. Scrimin, F. Mancin, Phosphate diesters cleavage mediated by Ce(IV) complexes self-assembled on gold nanoparticles, Org. Biomol. Chem. 8 (2010) 2622-2626.(b) R. Bonomi, P. Scrimin, F. Mancin, Phosphate diesters cleavage mediated by Ce(IV) complexes self-assembled on gold nanoparticles, Org. Biomol. Chem. 8 (2010) 2622-2626.

    13. [10] K. Sako, H. Aoyama, S. Sato, Y. Hashimoto, M. Baba, Gamma-carboline derivatives with anti-bovine viral diarrhea virus (BVDV) activity, Bioorg. Med. Chem. 16 (2008) 3780-3790.[10] K. Sako, H. Aoyama, S. Sato, Y. Hashimoto, M. Baba, Gamma-carboline derivatives with anti-bovine viral diarrhea virus (BVDV) activity, Bioorg. Med. Chem. 16 (2008) 3780-3790.

    14. [11] (a) T.J. Liang, B. Rehermann, L.B. Seeff, J.H. Hoofnagle, Pathogenesis, natural history, treatment, and prevention of hepatitis C, Ann. Intern. Med. 132 (2000) 296-305;[11] (a) T.J. Liang, B. Rehermann, L.B. Seeff, J.H. Hoofnagle, Pathogenesis, natural history, treatment, and prevention of hepatitis C, Ann. Intern. Med. 132 (2000) 296-305;

    15. [15]

      (b) P.H. Hayashi, A.M. Di Bisceglie, The progression of hepatitis B- and C-infections to chronic liver disease and hepatocellular carcinoma: epidemiology and pathogenesis, Med. Clin. N. Am. 89 (2005) 371-389.(b) P.H. Hayashi, A.M. Di Bisceglie, The progression of hepatitis B- and C-infections to chronic liver disease and hepatocellular carcinoma: epidemiology and pathogenesis, Med. Clin. N. Am. 89 (2005) 371-389.

    16. [12] (a) D.Z. Chen, J.D. Jiang, K.Q. Zhang, et al., Evaluation of anti-HCV activity and SAR study of (+)-lycoricidine through targeting of host heat-stress cognate 70 (Hsc70), Bioorg. Med. Chem. Lett. 23 (2013) 2679-2682;[12] (a) D.Z. Chen, J.D. Jiang, K.Q. Zhang, et al., Evaluation of anti-HCV activity and SAR study of (+)-lycoricidine through targeting of host heat-stress cognate 70 (Hsc70), Bioorg. Med. Chem. Lett. 23 (2013) 2679-2682;

    17. [17]

      (b) H. Aoyama, K. Sugita, M. Nakamura, et al., Fused heterocyclic amido compounds as anti-hepatitis C virus agents, Bioorg. Med. Chem. 19 (2011) 2675-2687.(b) H. Aoyama, K. Sugita, M. Nakamura, et al., Fused heterocyclic amido compounds as anti-hepatitis C virus agents, Bioorg. Med. Chem. 19 (2011) 2675-2687.

    18. [13] (a) H.W. Xu, L.J. Zhao, H.F. Liu, et al., Synthesis and anti-BVDV activity of novel dsultones in vitro: implications for HCV therapies, Bioorg. Med. Chem. Lett. 24 (2014) 2388-2391;[13] (a) H.W. Xu, L.J. Zhao, H.F. Liu, et al., Synthesis and anti-BVDV activity of novel dsultones in vitro: implications for HCV therapies, Bioorg. Med. Chem. Lett. 24 (2014) 2388-2391;

    19. [19]

      (b) M.M. Liu, L. Zhou, P.L. He, et al., Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy, Eur. J. Med. Chem. 52 (2012) 33-43.(b) M.M. Liu, L. Zhou, P.L. He, et al., Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy, Eur. J. Med. Chem. 52 (2012) 33-43.

    20. [14] (a) V.E. Buckwold, J. Wei, M. Wenzel-Mathers, J. Russell, Synergistic in vitro interactions between alpha interferon and ribavirin against bovine viral diarrhea virus and yellow fever virus as surrogate models of hepatitis C virus replication, Antimicrob. Agents Chemother. 47 (2003) 2293-2298;[14] (a) V.E. Buckwold, J. Wei, M. Wenzel-Mathers, J. Russell, Synergistic in vitro interactions between alpha interferon and ribavirin against bovine viral diarrhea virus and yellow fever virus as surrogate models of hepatitis C virus replication, Antimicrob. Agents Chemother. 47 (2003) 2293-2298;

    21. [21]

      (b) K. Yanagida, C. Baba, M. Baba, Inhibition of bovine viral diarrhea virus (BVDV) by mizoribine: synergistic effect of combination with interferon-alpha, Antiviral Res. 64 (2004) 195-201.(b) K. Yanagida, C. Baba, M. Baba, Inhibition of bovine viral diarrhea virus (BVDV) by mizoribine: synergistic effect of combination with interferon-alpha, Antiviral Res. 64 (2004) 195-201.

    22. [15] (a) S. Ningaiah, U.K. Bhadraiah, S.D. Doddaramappa, S. Keshavamurthy, C. Javarasetty, Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation, Bioorg. Med. Chem. Lett. 24 (2014) 245-248;[15] (a) S. Ningaiah, U.K. Bhadraiah, S.D. Doddaramappa, S. Keshavamurthy, C. Javarasetty, Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation, Bioorg. Med. Chem. Lett. 24 (2014) 245-248;

    23. [23]

      (b) J. Regan, S. Breitfelder, P. Cirillo, et al., Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate, J. Med. Chem. 45 (2002) 2994-3008.(b) J. Regan, S. Breitfelder, P. Cirillo, et al., Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate, J. Med. Chem. 45 (2002) 2994-3008.

    24. [16] (a) B.P. Bandgar, H.V. Chavan, L.K. Adsul, et al., Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones, Bioorg, Med. Chem. Lett. 23 (2013) 912-916;[16] (a) B.P. Bandgar, H.V. Chavan, L.K. Adsul, et al., Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones, Bioorg, Med. Chem. Lett. 23 (2013) 912-916;

    25. [25]

      (b) N.C. Desai, K.M. Rajpara, V.V. Joshi, Synthesis of pyrazole encompassing 2- pyridone derivatives as antibacterial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2714-2717.(b) N.C. Desai, K.M. Rajpara, V.V. Joshi, Synthesis of pyrazole encompassing 2- pyridone derivatives as antibacterial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2714-2717.

    26. [17] I.K. Sorokina, V.A. Parshin, V.V. Asnina, R.B. Parimbetova, V.G. Granik, Novel 2- pyrrolidone derivatives closely related to piracetam: synthesis and pharmacological study, Khim. Farm. Zh. 26 (1992) 41-44.[17] I.K. Sorokina, V.A. Parshin, V.V. Asnina, R.B. Parimbetova, V.G. Granik, Novel 2- pyrrolidone derivatives closely related to piracetam: synthesis and pharmacological study, Khim. Farm. Zh. 26 (1992) 41-44.

    27. [18] E.M. Gsiusky, S. Lee, C.W. Sigle, D.S. Duch, C.A. Nichol, Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine, J. Med. Chem. 23 (1980) 327-329.[18] E.M. Gsiusky, S. Lee, C.W. Sigle, D.S. Duch, C.A. Nichol, Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine, J. Med. Chem. 23 (1980) 327-329.

    28. [19] M.N. Nasr, M.M. Gineinah, Pyrido[2,3-d]pyrimidines and pyrimido[50,40:5,6]pyrido[2,3-d]pyramidines as new antiviral agents: synthesis and biological activity, Arch. Pharm. Med. Chem. 335 (2002) 289-295.[19] M.N. Nasr, M.M. Gineinah, Pyrido[2,3-d]pyrimidines and pyrimido[50,40:5,6]pyrido[2,3-d]pyramidines as new antiviral agents: synthesis and biological activity, Arch. Pharm. Med. Chem. 335 (2002) 289-295.

    29. [20] J. Quiroga, J. Portilla, H. Serrane, et al., Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions, Tetrahedron Lett. 48 (2007) 1987-1990.[20] J. Quiroga, J. Portilla, H. Serrane, et al., Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions, Tetrahedron Lett. 48 (2007) 1987-1990.

    30. [21] (a) C. Han, T. Zhang, A.Q. Zhang, et al., Efficient catalyst-free one-pot threecomponent synthesis of novel spirooxindole derivatives and their cytotoxic activities, Synthesis 46 (2014) 1389-1398;[21] (a) C. Han, T. Zhang, A.Q. Zhang, et al., Efficient catalyst-free one-pot threecomponent synthesis of novel spirooxindole derivatives and their cytotoxic activities, Synthesis 46 (2014) 1389-1398;

    31. [31]

      (b) B.J.L. Royles, Naturally occurring tetramic acids: structure, isolation, and synthesis, Chem. Rev. 95 (1995) 1981-2001.(b) B.J.L. Royles, Naturally occurring tetramic acids: structure, isolation, and synthesis, Chem. Rev. 95 (1995) 1981-2001.

    32. [22] R.N. Lacey, Derivatives of acetoacetic acid. Part VII. α-acetyltetramic acids, J. Chem. Soc. (1954) 850-854.[22] R.N. Lacey, Derivatives of acetoacetic acid. Part VII. α-acetyltetramic acids, J. Chem. Soc. (1954) 850-854.

    33. [23] S. Gelinx, B. Chantegrel, M. Chabannet, Synthesis of 4-oxo-1,4-dihydro-6Hfuro[3,4-c]pyrazole and 4-oxo-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole systems from acyl tetronic and tetramic acids, Synth. Commun. 12 (1982) 431-437.[23] S. Gelinx, B. Chantegrel, M. Chabannet, Synthesis of 4-oxo-1,4-dihydro-6Hfuro[3,4-c]pyrazole and 4-oxo-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole systems from acyl tetronic and tetramic acids, Synth. Commun. 12 (1982) 431-437.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  863
  • HTML全文浏览量:  20
文章相关
  • 发布日期:  2015-01-10
  • 收稿日期:  2014-11-06
  • 网络出版日期:  2014-12-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章