Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration

Dong-Hai Yu Jing-Na Shao Rong-Xing He Ming Li

Citation:  Dong-Hai Yu, Jing-Na Shao, Rong-Xing He, Ming Li. Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration[J]. Chinese Chemical Letters, 2015, 26(5): 564-566. doi: 10.1016/j.cclet.2014.12.017 shu

Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration

    通讯作者: Ming Li,
  • 基金项目:

    This work was supported by National Natural Science Foundation of China (Nos. 21073144, 21173169)  (Nos. 21073144, 21173169)

    the Fundamental Research Funds for the Central Universities (No. XDJK2013A008). Computing resources were provided by the National Supercomputing Center of China in Shenzhen. (No. XDJK2013A008)

摘要: Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported CuI trifluoromethyl complexes. Four proposed reaction pathways, namely σ-bond metathesis (BM), concerted oxidative addition-reductive elimination (OARE), iodine atomtransfer (IAT) and single-electron transfer (SET), have been computed by density functional theory (DFT). The result indicated that the concerted OARE mechanism is favored among the four reaction pathways, suggesting the trifluoromethylation may occur via concerted OARE mechanism involving Ar-X oxidative addition to the Cu(I) center as the rate determining step.

English

  • 
    1. [1] (a) D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond, Chem. Soc. Rev. 37 (2008) 308-319;[1] (a) D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond, Chem. Soc. Rev. 37 (2008) 308-319;

    2. [2]

      (b) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886;(b) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886;

    3. [3]

      (c) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade(2001-2011), Chem. Rev. 114 (2014) 2432-2506;(c) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade(2001-2011), Chem. Rev. 114 (2014) 2432-2506;

    4. [4]

      (d) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinalchemistry, Chem. Soc. Rev. 37 (2008) 320-330;(d) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinalchemistry, Chem. Soc. Rev. 37 (2008) 320-330;

    5. [5]

      (e) C.H. Ge, R. Zhang, P. Fan, et al., Supramolecular assembly of 2,4,5-trifluorobenzoatecomplex based on weak interactions involving fluorine atoms, Chin.Chem. Lett. 24 (2013) 73-75;(e) C.H. Ge, R. Zhang, P. Fan, et al., Supramolecular assembly of 2,4,5-trifluorobenzoatecomplex based on weak interactions involving fluorine atoms, Chin.Chem. Lett. 24 (2013) 73-75;

    6. [6]

      (f) X.J. Song, P. Yang, H. Gao, et al., Facile synthesis and antitumor activity of novel2-trifluoromethylthieno[2,3-d]pyrimidine derivatives, Chin. Chem. Lett. 25(2014) 1006-1010.(f) X.J. Song, P. Yang, H. Gao, et al., Facile synthesis and antitumor activity of novel2-trifluoromethylthieno[2,3-d]pyrimidine derivatives, Chin. Chem. Lett. 25(2014) 1006-1010.

    7. [2] (a) F. Qing, Recent advances of trifluoromethylation, Chin. J. Org. Chem. 32 (2012)815-824;[2] (a) F. Qing, Recent advances of trifluoromethylation, Chin. J. Org. Chem. 32 (2012)815-824;

    8. [8]

      (b) J.A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation, and perfluoroalkylationreactions, Chem. Rev. 108 (2008) PR1-PR43;(b) J.A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation, and perfluoroalkylationreactions, Chem. Rev. 108 (2008) PR1-PR43;

    9. [9]

      (c) J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogeniccarbon centers featuring a trifluoromethyl group from prochiral trifluoromethylatedsubstrates, Chem. Rev. 111 (2010) 455-529;(c) J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogeniccarbon centers featuring a trifluoromethyl group from prochiral trifluoromethylatedsubstrates, Chem. Rev. 111 (2010) 455-529;

    10. [10]

      (d) S. Barata-Vallejo, A. Postigo, Metal-mediated radical perfluoroalkylation oforganic compounds, Coord. Chem. Rev. 257 (2013) 3051-3069.(d) S. Barata-Vallejo, A. Postigo, Metal-mediated radical perfluoroalkylation oforganic compounds, Coord. Chem. Rev. 257 (2013) 3051-3069.

    11. [3] (a) O.A. Tomashenko, V.V. Grushin, Aromatic trifluoromethylation with metalcomplexes, Chem. Rev. 111 (2011) 4475-4521;[3] (a) O.A. Tomashenko, V.V. Grushin, Aromatic trifluoromethylation with metalcomplexes, Chem. Rev. 111 (2011) 4475-4521;

    12. [12]

      (b) S. Roy, B.T. Gregg, G.W. Gribble, V.D. Le, S. Roy, Trifluoromethylation of aryland heteroaryl halides, Tetrahedron 67 (2011) 2161-2195;(b) S. Roy, B.T. Gregg, G.W. Gribble, V.D. Le, S. Roy, Trifluoromethylation of aryland heteroaryl halides, Tetrahedron 67 (2011) 2161-2195;

    13. [13]

      (c) C.P. Zhang, Q.Y. Chen, Y. Guo, J.C. Xiao, Y.C. Gu, Difluoromethylation andtrifluoromethylation reagents derived from tetrafluoroethane β-sultone: synthesis,reactivity and applications, Coord. Chem. Rev. 261 (2014) 28-72;(c) C.P. Zhang, Q.Y. Chen, Y. Guo, J.C. Xiao, Y.C. Gu, Difluoromethylation andtrifluoromethylation reagents derived from tetrafluoroethane β-sultone: synthesis,reactivity and applications, Coord. Chem. Rev. 261 (2014) 28-72;

    14. [14]

      (d) T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containingfunctional groups, Angew. Chem. Int. Ed. 52 (2013) 8214-8264.(d) T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containingfunctional groups, Angew. Chem. Int. Ed. 52 (2013) 8214-8264.

    15. [4] (a) V.C.R. McLoughlin, J. Thrower, A route to fluoroalkyl-substituted aromaticcompounds involving fluoroalkylcopper intermediates, Tetrahedron 25 (1969)5921-5940;[4] (a) V.C.R. McLoughlin, J. Thrower, A route to fluoroalkyl-substituted aromaticcompounds involving fluoroalkylcopper intermediates, Tetrahedron 25 (1969)5921-5940;

    16. [16]

      (b) Q.Y. Chen, S.W. Wu, Methyl fluorosulphonyldifluoroacetate; a new trifluoromethylatingagent, J. Chem. Soc., Chem. Commun. (1989) 705-706;(b) Q.Y. Chen, S.W. Wu, Methyl fluorosulphonyldifluoroacetate; a new trifluoromethylatingagent, J. Chem. Soc., Chem. Commun. (1989) 705-706;

    17. [17]

      (c) M. Oishi, H. Kondo, H. Amii, Aromatic trifluoromethylation catalytic in copper,Chem. Commun. (2009) 1909-1911.(c) M. Oishi, H. Kondo, H. Amii, Aromatic trifluoromethylation catalytic in copper,Chem. Commun. (2009) 1909-1911.

    18. [5] D.M. Wiemers, D.J. Burton, Pregeneration, spectroscopic detection and chemicalreactivity of (trifluoromethyl)copper, an elusive and complex species, J. Am.Chem. Soc. 108 (1986) 832-834.[5] D.M. Wiemers, D.J. Burton, Pregeneration, spectroscopic detection and chemicalreactivity of (trifluoromethyl)copper, an elusive and complex species, J. Am.Chem. Soc. 108 (1986) 832-834.

    19. [6] A.I. Konovalov, A. Lishchynskyi, V.V. Grushin, Mechanism of trifluoromethylationof aryl halides with CuCF3 and the ortho effect, J. Am. Chem. Soc. 136 (2014)13410-13425.[6] A.I. Konovalov, A. Lishchynskyi, V.V. Grushin, Mechanism of trifluoromethylationof aryl halides with CuCF3 and the ortho effect, J. Am. Chem. Soc. 136 (2014)13410-13425.

    20. [7] G.G. Dubinina, H. Furutachi, D.A. Vicic, Active trifluoromethylating agents fromwell-defined copper(I)-CF3 complexes, J. Am. Chem. Soc. 130 (2008) 8600-8601.[7] G.G. Dubinina, H. Furutachi, D.A. Vicic, Active trifluoromethylating agents fromwell-defined copper(I)-CF3 complexes, J. Am. Chem. Soc. 130 (2008) 8600-8601.

    21. [8] Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry,transition metal bonding, thermochemical kinetics, and noncovalentinteractions, J. Chem. Phys. 125 (2006) 194101.[8] Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry,transition metal bonding, thermochemical kinetics, and noncovalentinteractions, J. Chem. Phys. 125 (2006) 194101.

    22. [9] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods.XII. Further extensions of Gaussian-type basis sets for use in molecular orbitalstudies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261;[9] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods.XII. Further extensions of Gaussian-type basis sets for use in molecular orbitalstudies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261;

    23. [23]

      (b) P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecularorbital hydrogenation energies, Theor. Chim. Acta 28 (1973) 213-222;(b) P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecularorbital hydrogenation energies, Theor. Chim. Acta 28 (1973) 213-222;

    24. [24]

      (c) M.M. Francl, W.J. Pietro, W.J. Hehre, et al., Self-consistent molecular orbitalmethods. XXIII. A polarization-type basis set for second-row elements, J. Chem.Phys. 77 (1982) 3654-3665.(c) M.M. Francl, W.J. Pietro, W.J. Hehre, et al., Self-consistent molecular orbitalmethods. XXIII. A polarization-type basis set for second-row elements, J. Chem.Phys. 77 (1982) 3654-3665.

    25. [10] (a) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals, J. Chem. Phys.82 (1985) 299-310;[10] (a) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals, J. Chem. Phys.82 (1985) 299-310;

    26. [26]

      (b) W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284-298;(b) W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284-298;

    27. [27]

      (c) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985)270-283.(c) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985)270-283.

    28. [11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D, Gaussian,Inc., Wallingford, CT, 2013.[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D, Gaussian,Inc., Wallingford, CT, 2013.

    29. [12] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based onsolute electron density and on a continuum model of the solvent defined by thebulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009)6378-6396.[12] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based onsolute electron density and on a continuum model of the solvent defined by thebulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009)6378-6396.

    30. [13] (a) G. Lefèvre, G. Franc, A. Tlili, et al., Contribution to the mechanism of coppercatalyzedC-N and C-O bond formation, Organometallics 31 (2012) 7694-7707;[13] (a) G. Lefèvre, G. Franc, A. Tlili, et al., Contribution to the mechanism of coppercatalyzedC-N and C-O bond formation, Organometallics 31 (2012) 7694-7707;

    31. [31]

      (b) I.P. Beletskaya, A.V. Cheprakov, The complementary competitors: palladiumand copper in C-N cross-coupling reactions, Organometallics 31 (2012) 7753-7808;(b) I.P. Beletskaya, A.V. Cheprakov, The complementary competitors: palladiumand copper in C-N cross-coupling reactions, Organometallics 31 (2012) 7753-7808;

    32. [32]

      (c) G.O. Jones, P. Liu, K.N. Houk, S.L. Buchwald, Computational explorations ofmechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-typereactions, J. Am. Chem. Soc. 132 (2010) 6205-6213;(c) G.O. Jones, P. Liu, K.N. Houk, S.L. Buchwald, Computational explorations ofmechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-typereactions, J. Am. Chem. Soc. 132 (2010) 6205-6213;

    33. [33]

      (d) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bondformation one century after the discovery of the Ullmann reaction, Chem. Rev.102 (2002) 1359-1470;(d) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bondformation one century after the discovery of the Ullmann reaction, Chem. Rev.102 (2002) 1359-1470;

    34. [34]

      (e) Z. Weng, W. He, C. Chen, et al., An air-stable copper reagent for nucleophilictrifluoromethylthiolation of aryl halides, Angew. Chem. Int. Ed. 52 (2013) 1548-1552.(e) Z. Weng, W. He, C. Chen, et al., An air-stable copper reagent for nucleophilictrifluoromethylthiolation of aryl halides, Angew. Chem. Int. Ed. 52 (2013) 1548-1552.

    35. [14] (a) A. Houmam, Electron transfer initiated reactions: bond formation and bonddissociation, Chem. Rev. 108 (2008) 2180-2237;[14] (a) A. Houmam, Electron transfer initiated reactions: bond formation and bonddissociation, Chem. Rev. 108 (2008) 2180-2237;

    36. [36]

      (b) C.Y. Lin, M.L. Coote, A. Gennaro, K. Matyjaszewski, Ab initio evaluation of thethermodynamic and electrochemical properties of alkyl halides and radicals andtheir mechanistic implications for atom transfer radical polymerization, J. Am.Chem. Soc. 130 (2008) 12762-12774.(b) C.Y. Lin, M.L. Coote, A. Gennaro, K. Matyjaszewski, Ab initio evaluation of thethermodynamic and electrochemical properties of alkyl halides and radicals andtheir mechanistic implications for atom transfer radical polymerization, J. Am.Chem. Soc. 130 (2008) 12762-12774.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  849
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2014-12-30
  • 收稿日期:  2014-09-30
  • 网络出版日期:  2014-12-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章