Quantum-chemical study on the catalytic activity of TinRumO2(1 1 0) surfaces on chlorine evolution

Xiao-Hua Hu Jia-Chuan Pan Dan Wang Wen Zhong Hao-Yuan Wang Lin-Yi Wang

Citation:  Xiao-Hua Hu, Jia-Chuan Pan, Dan Wang, Wen Zhong, Hao-Yuan Wang, Lin-Yi Wang. Quantum-chemical study on the catalytic activity of TinRumO2(1 1 0) surfaces on chlorine evolution[J]. Chinese Chemical Letters, 2015, 26(5): 595-598. doi: 10.1016/j.cclet.2014.12.011 shu

Quantum-chemical study on the catalytic activity of TinRumO2(1 1 0) surfaces on chlorine evolution

    通讯作者: Xiao-Hua Hu,
  • 基金项目:

    We are grateful to the Natural Science Foundation of China (No. 51072239)  (No. 51072239)

    the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012-032) for financial support. (No. CQDXWL-2012-032)

摘要: Based on the generalized gradient approximation (GGA), Perdew-Wang-91 (PW91) combined with a periodic slab model has been applied to study the catalytic activity of chlorine evolution on TinRumO2(1 1 0) surface. Metal oxide model TinRumO2 has been established with pure TiO2 and RuO2 on the basis set of Double Numerical plus polarization (DNP), in which the proportion of n:m was 3:1, 1:1, or 1:3. Analysis on the reaction activity in the electrochemical reaction and the electrochemical desorption reaction was based on Frontiermolecular orbital theory. The results show that the TinRumO2 with a ratio of Ti:Ru at 3:1 is best facilitates the electrochemical reaction and electrochemical desorption reaction to produce M-Clads intermediate and precipitate Cl2. In addition, the adsorption energy of Cl on the surface of Ti3Ru1O2 possesses the minimum value of 2.514 eV, and thus electrochemical desorption reaction could occur most easily.

English

  • 
    1. [1] S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta 29 (1984) 1503-1512.[1] S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta 29 (1984) 1503-1512.

    2. [2] M.V. Makarova, J. Jirkovský,M. Klementová, et al., The electrocatalytic behavior of Ru0.8Co0.2OM2-x - the effect of particle shape and surface composition, Electrochim. Acta 53 (2008) 2656-2664.[2] M.V. Makarova, J. Jirkovský,M. Klementová, et al., The electrocatalytic behavior of Ru0.8Co0.2OM2-x - the effect of particle shape and surface composition, Electrochim. Acta 53 (2008) 2656-2664.

    3. [3] Y.V. Pleskov, M.D. Krotova, V.I. Polyakov, et al., Electrochemical properties of amorphous nitrogen-containing hydrogenated diamondlike-carbon films, Russ. J. Electrochem. 36 (2008) 1008-1013.[3] Y.V. Pleskov, M.D. Krotova, V.I. Polyakov, et al., Electrochemical properties of amorphous nitrogen-containing hydrogenated diamondlike-carbon films, Russ. J. Electrochem. 36 (2008) 1008-1013.

    4. [4] K. Endo, Y. Katayama, T. Miura, T. Kishi, Composition dependence of the oxygenevolution reaction rate on IrxTi1 xO2 mixed-oxide electrodes, J. Appl. Electrochem. 32 (2002) 173-178.[4] K. Endo, Y. Katayama, T. Miura, T. Kishi, Composition dependence of the oxygenevolution reaction rate on IrxTi1 xO2 mixed-oxide electrodes, J. Appl. Electrochem. 32 (2002) 173-178.

    5. [5] J. Ribeiro, P.D.P. Alves, A.R. de Andrade, Effect of the preparation methodology on some physical and electrochemical properties of Ti/IrxSn(1-x)O2 materials, J. Mater. Sci. 42 (2007) 9293-9299.[5] J. Ribeiro, P.D.P. Alves, A.R. de Andrade, Effect of the preparation methodology on some physical and electrochemical properties of Ti/IrxSn(1-x)O2 materials, J. Mater. Sci. 42 (2007) 9293-9299.

    6. [6] F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, et al., Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-x)O2 electrodes, J. Appl. Electrochem. 37 (2007) 583-592.[6] F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, et al., Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-x)O2 electrodes, J. Appl. Electrochem. 37 (2007) 583-592.

    7. [7] V.G. Lourdes, H. Erzsébet, K. János, R. Ákos, D.B. Achille, Investigation of IrO2/SnO2 thin film evolution from aqueous media, Appl. Surf. Sci. 253 (2006) 1178-1184.[7] V.G. Lourdes, H. Erzsébet, K. János, R. Ákos, D.B. Achille, Investigation of IrO2/SnO2 thin film evolution from aqueous media, Appl. Surf. Sci. 253 (2006) 1178-1184.

    8. [8] K. Macounova, M. Makarova, J. Jirkovsky, J. Franc, P. Krtil, Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes, Electrochim. Acta 53 (2008) 6126-6134.[8] K. Macounova, M. Makarova, J. Jirkovsky, J. Franc, P. Krtil, Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes, Electrochim. Acta 53 (2008) 6126-6134.

    9. [9] V.G. Lourdes, F. Sergio, D.B. Achille, Preparation and characterization of RuO2- IrO2-SnO2 ternary mixtures for advanced electrochemical technology, Appl. Catal. B: Environ. 67 (2006) 34-40.[9] V.G. Lourdes, F. Sergio, D.B. Achille, Preparation and characterization of RuO2- IrO2-SnO2 ternary mixtures for advanced electrochemical technology, Appl. Catal. B: Environ. 67 (2006) 34-40.

    10. [10] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Preparation and electrochemical characterization of TiRuxMn1-xO2 electrodes, J. Appl. Electrochem. 32 (2002) 513-520.[10] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Preparation and electrochemical characterization of TiRuxMn1-xO2 electrodes, J. Appl. Electrochem. 32 (2002) 513-520.

    11. [11] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Ruthenium dioxide films on titanium wire electrodes by spray pyrolysis: preparation and electrochemical characterization, J. Appl. Electrochem. 27 (1997) 1323-1327.[11] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Ruthenium dioxide films on titanium wire electrodes by spray pyrolysis: preparation and electrochemical characterization, J. Appl. Electrochem. 27 (1997) 1323-1327.

    12. [12] M. Aparicio, L.C. Klein, Thin and thick RuO2-TiO2 coatings on titanium substrates by the sol-gel process, J. Sol-Gel Sci. Technol. 29 (2004) 81-88.[12] M. Aparicio, L.C. Klein, Thin and thick RuO2-TiO2 coatings on titanium substrates by the sol-gel process, J. Sol-Gel Sci. Technol. 29 (2004) 81-88.

    13. [13] L. Armelao, D. Barreca, B. Moraru, A molecular approach to RuO2-based thin films: sol-gel synthesis and characterisation, J. Non-Cryst. Solids 316 (2003) 364-371.[13] L. Armelao, D. Barreca, B. Moraru, A molecular approach to RuO2-based thin films: sol-gel synthesis and characterisation, J. Non-Cryst. Solids 316 (2003) 364-371.

    14. [14] M. Metikoš-Hukvić, R. Babić, F. Jović, Z. Grubač, Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution, Electrochim. Acta 51 (2006) 1157-1164.[14] M. Metikoš-Hukvić, R. Babić, F. Jović, Z. Grubač, Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution, Electrochim. Acta 51 (2006) 1157-1164.

    15. [15] V. Briss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway, Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131 (1984) 1502-1510.[15] V. Briss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway, Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131 (1984) 1502-1510.

    16. [16] M. Hiratani, Y. Matsui, K. Imagawa, S. Kimura, Growth of RuO2 thin films by pulsed-laser deposition, Thin Solid Films 366 (2000) 102-106.[16] M. Hiratani, Y. Matsui, K. Imagawa, S. Kimura, Growth of RuO2 thin films by pulsed-laser deposition, Thin Solid Films 366 (2000) 102-106.

    17. [17] R. Kö tz, S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta 31 (1986) 1311-1316.[17] R. Kö tz, S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta 31 (1986) 1311-1316.

    18. [18] J. Kawakita, M. Stratmann, A.W. Hasselb, High voltage pulse anodization of a NiTi shape memory alloy, J. Electrochem. Soc. 154 (2007) C294-C298.[18] J. Kawakita, M. Stratmann, A.W. Hasselb, High voltage pulse anodization of a NiTi shape memory alloy, J. Electrochem. Soc. 154 (2007) C294-C298.

    19. [19] S. Trasatti, W.E.O. Grady, Mechanism of chlorine evolution on oxide anodes study of pH effects, J. Electroanal. Chem. Interfac. Electrochem. 228 (1987) 393-406.[19] S. Trasatti, W.E.O. Grady, Mechanism of chlorine evolution on oxide anodes study of pH effects, J. Electroanal. Chem. Interfac. Electrochem. 228 (1987) 393-406.

    20. [20] S. Trasatti, G. Lodi, Electrodes of Conductive Metallic Oxides, Elsevier, New York, 1980, pp. 301-358.[20] S. Trasatti, G. Lodi, Electrodes of Conductive Metallic Oxides, Elsevier, New York, 1980, pp. 301-358.

    21. [21] T. Hepel, F.H. Pollak, W.E. O’Grady, Chlorine evolution and reduction processes at oriented single-crystal RuO2 electrodes, J. Electrochem. Soc. 133 (1986) 69-75.[21] T. Hepel, F.H. Pollak, W.E. O’Grady, Chlorine evolution and reduction processes at oriented single-crystal RuO2 electrodes, J. Electrochem. Soc. 133 (1986) 69-75.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  977
  • HTML全文浏览量:  49
文章相关
  • 发布日期:  2014-12-30
  • 收稿日期:  2014-08-10
  • 网络出版日期:  2014-12-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章