棒状多孔氧化铝负载氧化铬催化丙烷脱氢反应性能

高新芊 陆文多 户守昭 李文翠 陆安慧

引用本文: 高新芊,  陆文多,  户守昭,  李文翠,  陆安慧. 棒状多孔氧化铝负载氧化铬催化丙烷脱氢反应性能[J]. 催化学报, 2019, 40(2): 184-191. doi: 10.1016/S1872-2067(18)63202-4 shu
Citation:  Xin-Qian Gao,  Wen-Duo Lu,  Shou-Zhao Hu,  Wen-Cui Li,  An-Hui Lu. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2019, 40(2): 184-191. doi: 10.1016/S1872-2067(18)63202-4 shu

棒状多孔氧化铝负载氧化铬催化丙烷脱氢反应性能

  • 基金项目:

    国家自然科学基金(21733002);中德双边联合研究项目(2161101168);长江学者奖励计划(T2015036).

摘要: 丙烯是一种重要的化工原料,目前工业上主要来自石脑油、轻质油以及其他石油副产物的蒸汽裂解和催化裂解.这些过程能耗巨大,碳排放严重.丙烷直接脱氢制丙烯原料利用率高,副产物少,是一条更加经济环保的丙烯生产路线.Cr2O3-Al2O3催化剂因其出色的性能和低廉的价格已在工业中应用,但氧化铝表面酸位点易催化副反应及积碳的形成,从而造成催化剂失活.因此,调控载体氧化铝结构具有重要的意义.
氧化铝的结构性质取决于合成条件以及焙烧过程表面羟基和水分的逐步脱除.我们课题组通过水热法合成了一系列表面粗糙的棒状氧化铝和富含五配位铝离子的片状氧化铝,以这些氧化铝为载体制备的负载型贵金属催化剂在催化反应中表现出优异的活性和稳定性.本文在前期工作基础上研究了不同焙烧温度对棒状氧化铝表面结构的影响,采用X射线衍射(XRD)、氮吸附、电镜(SEM/TEM)、氨气程序升温脱附(NH3-TPD)和紫外-可见光谱(UV-Vis)等手段表征了氧化铝结构,并探究了其对负载氧化铬催化剂上丙烷脱氢反应的影响.
XRD结果表明,低温焙烧所得主要为γ相氧化铝,提高焙烧温度至900℃时出现δ相氧化铝.氧化铝氮气吸附-脱附表现出IV型等温线,随焙烧温度升高,介孔结构保持,但比表面积和孔体积呈减小趋势.电镜观察显示氧化铝为棒状结构,表面粗糙.NH3-TPD结果表明自制氧化铝酸量低于商业氧化铝,且随焙烧温度升高酸量下降.以上结果表明焙烧温度在氧化铝性质调控过程中起重要作用.
以不同焙烧温度下制得的氧化铝等体积浸渍氧化铬制得氧化铬催化剂.丙烷脱氢反应结果表明,催化剂表现出优异的稳定性和再生性能.氮吸附等温线表明新鲜催化剂为介孔结构,这有利于反应物接触活性位点,并提供抗积碳阻塞能力.对比氧化铝负载氧化铬前后的电镜照片可知,催化剂表面粗糙度降低,说明活性组分均匀分散于氧化铝粗糙表面;反应前后催化剂形貌保持不变,催化剂在反应中表现出优异的结构稳定性.UV-Vis和H2-TPR结果表明,自制氧化铝和参比氧化铝表面的铬物种以相似配位状态存在,但铬物种在自制氧化铝表面更难还原,表现出更强的金属与载体相互作用.NH3-TPD结果表明,自制催化剂表面酸量(64 μmol NH3 g-1)远低于参比催化剂(140 μmol NH3 g-1).热重分析证实反应后自制催化剂积碳量明显低于参比催化剂.自制棒状氧化铝作为载体制备的氧化铬低酸催化剂可抑制积碳形成,提高丙烯选择性,在丙烷脱氢反应中表现出优异的活性和抗积碳能力.

English

    1. [1] L. Shi, B. Yan, D. Shao, F. Jiang, D. Q. Wang, A. H. Lu, Chin. J. Catal., 2017, 38, 389-395.

    2. [2] M. S. Kumar, N. Hammer, M. Ronning, A. Holmen, D. Chen, J. C. Walmsley, G. Oye, J. Catal., 2009, 261, 116-128.

    3. [3] W. Z. Lang, C. L. Hu, L. F. Chu, Y. J. Guo, RSC Adv., 2014, 4, 37107-37113.

    4. [4] A. Wegrzyniak, S. Jarczewski, A. Wegrzynowicz, B. Michorczyk, P. Kustrowski, P. Michorczyk, Nanomaterials, 2017, 7, 249.

    5. [5] L. Shi, G. M. Deng, W. C. Li, S. Miao, Q. N. Wang, W. P. Zhang, A. H. Lu, Angew. Chem. Int. Ed., 2015, 54, 13994-13998.

    6. [6] J. C. Bricker, Top. Catal., 2012, 55, 1309-1314.

    7. [7] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.

    8. [8] L. L. Xu, Z. L. Wang, H. L. Song, L. J. Chou, Catal. Commun., 2013, 35, 76-81.

    9. [9] H. Z. Wang, L. L. Sun, Z. J. Sui, Y. A. Zhu, G. H. Ye, D. Chen, X. G. Zhou, W. K. Yuan, Ind. Eng. Chem. Res., 2018, 57, 8647-8654.

    10. [10] J. Gascón, C. Téllez, J. Herguido, M. Menéndez, Appl. Catal. A, 2003, 248, 105-116.

    11. [11] J. Wang, A. H. Lu, M. R. Li, W. P. Zhang, Y. S. Chen, D. X. Tian, W. C. Li, ACS Nano, 2013, 7, 4902-4910.

    12. [12] P. Nachtigall, C. O. Arean, Phys. Chem. Chem. Phys., 2010, 12, 6307-6308.

    13. [13] J. H. Kwak, J. Z. Hu, D. H. Kim, J. Szanyi, C. Peden, J. Catal., 2007, 251, 189-194.

    14. [14] X. S. Liu, J. Phys. Chem. C, 2008, 112, 5066-5073.

    15. [15] A. Amirsalari, S. F. Shayesteh, Superlattices Microstruct., 2015, 82, 507-524.

    16. [16] J. Wang, K. Shang, Y. Guo, W. C. Li, Microporous Mesoporous Mater., 2013, 181, 141-145.

    17. [17] Y. W. Zhang, Y. M. Zhou, H. Liu, Y. Wang, Y. Xu, P. C. Wu, Appl. Catal. A, 2007, 333, 202-210.

    18. [18] Y. Zhang, Y. Zhou, A. D. Qiu, Y. Wang, Y. Xu, P. C. Wu, Ind. Eng. Chem. Res., 2006, 45, 2213-2219.

    19. [19] D. L. Liu, P. Bai, P. P. Wu, D. Z. Han, Y. M. Chai, Z. F. Yan, Appl. Surf. Sci., 2015, 351, 250-259.

    20. [20] K. M. Cho, S. Park, J. G. Seo, M. H. Youn, I. Nam, S. H. Baeck, J. S. Chung, K. W. Jun, I. K. Song, Chem. Eng. J, 2009, 146, 307-314.

    21. [21] Z. X. Sun, T. T. Zheng, Q. B. Bo, M. Du, W. Forsling, J. Colloid Inter-face Sci., 2008, 319, 247-251.

    22. [22] B. M. Weckhuysen, A. A. Verberckmoes, A. R. De Baets, R. A. Schoonheydt, J. Catal., 1997, 166, 160-171.

    23. [23] S. De Rossi, M. P. Casaletto, G. Ferraris, A. Cimino, G. Minelli, Appl. Catal. A, 1998, 167, 257-270.

    24. [24] K. Takehira, Y. Ohishi, T. Shishido, T. Kawabata, K. Takaki, Q. H. Zhang, Y. Wang, J. Catal., 2004, 224, 404-416.

    25. [25] T. P. Otroshchenko, U. Rodemerck, D. Linke, E. V. Kondratenko, J. Catal., 2017, 356, 197-205.

    26. [26] E. Rombi, M. G. Cutrufello, V. Solinas, S. D. Rossi, G. Ferraris, A. Pistone, Appl. Catal. A, 2003, 251, 255-266.

    27. [27] E. Rombi, D. Gazzoli, M. G. Cutrufello, S. D. Rossi, I. Ferino, Appl. Surf. Sci., 2010, 256, 5576-5580.

    28. [28] L. R. Mentasty, O. F. Gorriz, L. E. Cadus, Ind. Eng. Chem. Res., 1999, 38, 396-404.

    29. [29] G. J. Wang, X. Y. Sun, X. S. Niu, F. F. Meng, F. Wang, Chem. Pap., 2018, 72, 921-928.

    30. [30] P. P. Li, W. Z. Lang, K. Xia, L. Luan, X. Yan, Y. J. Guo, Appl. Catal. A, 2016, 522, 172-179

  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  891
  • HTML全文浏览量:  84
文章相关
  • 收稿日期:  2018-10-12
  • 修回日期:  2018-11-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章