CeO2(111)和CeO2(100)的界面调控合成及在Pt(111)上的结构转变

张毅 冯卫 杨帆 包信和

引用本文: 张毅,  冯卫,  杨帆,  包信和. CeO2(111)和CeO2(100)的界面调控合成及在Pt(111)上的结构转变[J]. 催化学报, 2019, 40(2): 204-213. doi: 10.1016/S1872-2067(18)63171-7 shu
Citation:  Yi Zhang,  Wei Feng,  Fan Yang,  Xinhe Bao. Interface-controlled synthesis of CeO2(111) and CeO2(100) and their structural transition on Pt(111)[J]. Chinese Journal of Catalysis, 2019, 40(2): 204-213. doi: 10.1016/S1872-2067(18)63171-7 shu

CeO2(111)和CeO2(100)的界面调控合成及在Pt(111)上的结构转变

  • 基金项目:

    国家重点研发计划(2017YFB0602205,2016YFA0202803,2017YFA0303104);中国科学院战略性先导科技专项(XDB17020200);国家自然科学基金(21473191,91545204).

摘要: 氧化铈基催化材料在催化反应中存在显著的晶面效应,为了在分子尺度上理解其催化化学,需要可控合成具有明确表面结构的氧化铈.因此,我们研究了Pt(111)上氧化铈纳米结构和薄膜的生长.人们通常使用金属-氧化物之间的强相互作用来解释Pt/CeOx催化剂上的催化过程,然而对于Pt与CeOx之间的强相互作用仍旧缺乏原子尺度上的了解.我们的结果表明,Pt与氧化铈之间的相互作用可以影响氧化铈的表界面结构,这可能会进而影响Pt/CeOx催化剂的性质.
在Pt(111)上生长的氧化铈薄膜通常暴露CeO2(111)表面.我们发现Pt(111)表面厚度在三层以内的氧化铈薄膜,其结构是高度动态且随着退火温度升高而变化的,这种动态结构变化可归因于Pt和氧化铈间的界面电子作用.当氧化铈薄膜的厚度增大到三层以上,其负载的氧化铈团簇开始表现出迥异于三层以下氧化铈纳米岛的优异的热稳定性,表明Pt与CeOx之间的界面电子作用主要影响厚度在三层以内的氧化铈纳米结构.采用常规的反应沉积方法难以获得完全覆盖Pt(111)衬底的规整氧化铈薄膜,而我们通过采取一种两步的动力学限制生长方法,制备出了完全覆盖Pt(111)衬底的氧化铈薄膜.对于Pt(111)上厚度约为3-4层的氧化铈薄膜,在超高真空中于1000K退火会导致氧化铈薄膜表面形成CeO2(100)结构.这是因为高温还原促进了c-Ce2O3(100)缓冲层的形成,该缓冲层被Pt的界面电子转移以及相匹配的超晶格所稳定,并进一步成为顶层CeO2(100)结构生长的模板.进一步在900 K的氧气中处理则可将薄膜CeO2(100)表面完全转变为CeO2(111)表面.
因此,Pt(111)上氧化铈纳米岛和薄膜所展现的结构动态变化是由Pt-CeOx界面作用与氧化铈层间作用相互竞争所决定.本研究提供了对氧化铈负载Pt催化剂的原子级理解,虽然Pt/CeO2催化剂活性增强的原因常被简单归结于界面强相互作用,我们的研究在原子尺度上进一步表明Pt/CeO2在还原条件下易形成界面Ce2O3层.此外,本研究提供了不同晶面二氧化铈模型催化剂的构筑方法,可将对氧化铈晶面效应和Pt/CeOx催化剂的研究推进到分子尺度.

English

    1. [1] W. Huang, Acc. Chem. Res., 2016, 49, 520-527.

    2. [2] C. Sun, H. Li, L. Chen, Energy Environ. Sci., 2012, 5, 8475-8505.

    3. [3] M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science, 2013, 341, 771-773.

    4. [4] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 2003, 301, 935-938.

    5. [5] J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stac-chiola, S. D. Senanayake, S. Ma, M. Perez, P. Liu, J. F. Sanz, J. Hrbek, Angew. Chem. Int. Ed., 2009, 48, 8047-8050.

    6. [6] F. Yang, J. Graciani, J. Evans, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodri-guez, J. Am. Chem. Soc., 2011, 133, 3444-3451.

    7. [7] S. Torbrugge, M. Cranney, M. Reichling, Appl. Phys. Lett., 2008, 93, 073112/1-073112/3.

    8. [8] F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Science, 2005, 309, 752-755.

    9. [9] C. Yang, X. Yu, S. Heißler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang, C. Wöll, Angew. Chem. Int. Ed., 2017, 56, 375-379.

    10. [10] J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans, M. Perez, Angew. Chem. Int. Ed., 2007, 46, 1329-1332.

    11. [11] J. Kullgren, M. J. Wolf, C. W. M. Castleton, P. Mitev, W. J. Briels, K. Hermansson, Phys. Rev. Lett., 2014, 112, 156102/1-156102/5.

    12. [12] C. Yang, X. Yu, S. Heissler, P. Weidler, A. Nefedov, Y. Wang, C. Wöll, T. Kropp, J. Paier, J. Sauer, Angew. Chem. Int. Ed., 2017, 56, 16399-16404.

    13. [13] K. Werner, X. Weng, F. Calaza, M. Sterrer, T. Kropp, J. Paier, J. Sauer, M. Wilde, K. Fukutani, S. Shaikhutdinov, H. J. Freund, J. Am. Chem. Soc., 2017, 139, 17608-17616.

    14. [14] D. R. Mullins, P. V. Radulovic, S. H. Overbury, Surf. Sci., 1999, 429, 186-198.

    15. [15] V. Matolin, L. Sedlacek, I. Matolinova, F. Sutara, T. Skala, B. Smid, J. Libra, V. Nehasil, K. C. Prince, J. Phys. Chem. C, 2008, 112, 3751-3758.

    16. [16] D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, J. Am. Chem. Soc., 2017, 139, 5652-5655.

    17. [17] D. D. Kong, G. D. Wang, Y. H. Pan, S. W. Hu, J. B. Hou, H. B. Pan, C. T. Campbell, J. F. Zhu, J. Phys. Chem. C, 2011, 115, 6715-6725.

    18. [18] M. Sterrer, H. J. Freund, in Reference Module in Chemistry, Molecular Sciences, Chemical Engineering, Elsevier, 2017.

    19. [19] H. Kuhlenbeck, S. Shaikhutdinov, H. J. Freund, Chem. Rev., 2013, 113, 3986-4034.

    20. [20] U. Berner, K.-D. Schierbaum, Phys. Rev. B, 2002, 65, 235404/1-235404/10.

    21. [21] P. Luches, F. Pagliuca, S. Valeri, J. Phys. Chem. C, 2011, 115, 10718-10726.

    22. [22] J. A. Rodriguez, D. C. Grinter, Z. Liu, R. M. Palomino, S. D. Sena-nayake, Chem. Soc. Rev., 2017, 46, 1824-1841.

    23. [23] Y. Zhang, F. Yang, X. Bao, Surf. Sci., 2019, 679, 31-36.

    24. [24] V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skala, D. Mazur, J. Myslivecek, J. Libuda, V. Matolin, J. Phys. Chem. Lett., 2013, 4, 866-871.

    25. [25] T. Duchoň, F. Dvořák, M. Aulická, V. Stetsovych, M. Vorokhta, D. Mazur, K. Veltruská, T. Skála, J. Mysliveček, I. Matolínová, J. Phys. Chem. C, 2013, 118, 357-365.

    26. [26] J. Hocker, J.-O. Krisponeit, T. Schmidt, J. Falta, J. I. Flege, Na-noscale, 2017, 9, 9352-9358.

    27. [27] D. R. Mullins, Surf. Sci. Rep., 2015, 70, 42-85.

    28. [28] T. X. T. Sayle, S. C. Parker, D. C. Sayle, Phys. Chem. Chem. Phys., 2005, 7, 2936-2941.

    29. [29] G. Vile, S. Colussi, F. Krumeich, A. Trovarelli, J. Perez-Ramirez, Angew. Chem. Int. Ed., 2014, 53, 12069-12072.

    30. [30] R. Si, M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed., 2008, 47, 2884-2887.

    31. [31] Y. Pan, N. Nilius, C. Stiehler, H.-J. Freund, J. Goniakowski, C. Noguera, Adv. Mater. Interfaces, 2014, 1, 1400404.

    32. [32] J. I. Flege, J. Hoecker, B. Kaemena, T. O. Mentes, A. Sala, A. Locatelli, S. Gangopadhyay, J. T. Sadowski, S. D. Senanayake, J. Falta, Nanoscale, 2016, 8, 10849-10856.

    33. [33] F. Yang, Y. Choi, S. Agnoli, P. Liu, D. Stacchiola, J. Hrbek, J. A. Rodriguez, J. Phys. Chem. C, 2011, 115, 23062-23066.

    34. [34] O. Stetsovych, J. Beran, F. Dvorak, K. Masek, J. Myslivecek, V. Matolin, Appl. Surf. Sci., 2013, 285, 766-771.

    35. [35] J. Höcker, T. Duchoň, K. Veltruská, V. Matolín, J. Falta, S. D. Sena-nayake, J. I. Flege, J. Phys. Chem. C, 2016, 120, 4895-4901.

    36. [36] Y. Suchorski, R. Wrobel, S. Becker, B. Strzelczyk, W. Drachsel, H. Weiss, Surf. Sci., 2007, 601, 4843-4848.

    37. [37] Y. Lykhach, A. Neitzel, K. Sevcikova, V. Johanek, N. Tsud, T. Skala, K. C. Prince, V. Matolin, J. Libuda, ChemSusChem, 2014, 7, 77-81.

    38. [38] A. Bruix, J. A. Rodriguez, P. J. Ramírez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek, F. Illas, J. Am. Chem. Soc., 2012, 134, 8968-8974.

    39. [39] N. Nilius, S. M. Kozlov, J. F. Jerratsch, M. Baron, X. Shao, F. Vines, S. Shaikhutdinov, K. M. Neyman, H. J. Freund, ACS Nano, 2012, 6, 1126-1133.

    40. [40] L. H. Chan, J. Yuhara, J. Chem. Phys., 2015, 143, 074708/1-074708/8.

    41. [41] S. Ma, X. Zhao, J. A. Rodriguez, J. Hrbek, J. Phys. Chem. C, 2007, 111, 3685-3691.

    42. [42] J. A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Perez, Science, 2007, 318, 1757-1760.

    43. [43] S. Chang, S. Ruan, E. Wu, W. Huang, J. Phys. Chem. C, 2014, 118, 19238-19245.

    44. [44] H. Norenberg, J. H. Harding, Surf. Sci., 2001, 477, 17-24.

    45. [45] J. C. Conesa, Surf. Sci., 1995, 339, 337-352.

    46. [46] G. S. Herman, Phys. Rev. B, 1999, 59, 14899-14902.

    47. [47] S. E. Golunski, H. A. Hatcher, R. R. Rajaram, T. J. Truex, Appl. Catal. B, 1995, 5, 367-376.

    48. [48] G. Centi, P. Fornasiero, M. Graziani, J. Kaspar, F. Vazzana, Top. Catal., 2001, 16, 173-180.

    49. [49] H. P. Zhou, H. S. Wu, J. Shen, A. X. Yin, L. D. Sun, C. H. Yan, J. Am. Chem. Soc., 2010, 132, 4998-4999.

    50. [50] C. M. Y. Yeung, K. M. K. Yu, Q. J. Fu, D. Thompsett, M. I. Petch, S. C. Tsang, J. Am. Chem. Soc., 2005, 127, 18010-18011.

    51. [51] N. Tsubaki, K. Fujimoto, Top. Catal., 2003, 22, 325-335.

    52. [52] Y. Huang, A. Wang, L. Li, X. Wang, D. Su, T. Zhang, J. Catal., 2008, 255, 144-152.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  897
  • HTML全文浏览量:  117
文章相关
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章