介质阻挡放电甲醇脱氢偶联一步合成乙二醇反应中氢气的催化作用

张婧 李腾 王东江 张家良 郭洪臣

引用本文: 张婧, 李腾, 王东江, 张家良, 郭洪臣. 介质阻挡放电甲醇脱氢偶联一步合成乙二醇反应中氢气的催化作用[J]. 催化学报, 2015, 36(3): 274-282. doi: 10.1016/S1872-2067(14)60239-4 shu
Citation:  Jing Zhang, Teng Li, Dongjiang Wang, Jialiang Zhang, Hongchen Guo. The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge[J]. Chinese Journal of Catalysis, 2015, 36(3): 274-282. doi: 10.1016/S1872-2067(14)60239-4 shu

介质阻挡放电甲醇脱氢偶联一步合成乙二醇反应中氢气的催化作用

    通讯作者: 郭洪臣
摘要: 利用原位发射光谱表征和在线色谱分析, 研究了甲醇介质阻挡放电脱氢偶联一步合成乙二醇反应中氢气的催化作用, 考察了放电频率、甲醇和氢气进料量以及反应压力的影响. 结果表明, 在介质阻挡放电产生的非平衡等离子体中, H2不但能显著提高甲醇转化率, 而且能显著提高乙二醇的选择性. 在300 ℃, 0.1 MPa, 反应器注入功率为11 W, 放电频率为12.0 kHz, 甲醇气体进料量为11.1 mL/min, 氢气进料量为80-180 mL/min的条件下, 甲醇转化率接近30%, 乙二醇选择性大于75%. 乙二醇收率与激发态氢原子的Hα谱线强度之间存在同增同减关系. 由此推测, 氢原子是起催化作用的活性氢物种. 活性氢物种的生成途径是: 基态氢分子通过与电子碰撞变成激发态, 激发态氢分子通过第一激发态氢自动解离为基态氢原子. 放电反应条件通过影响氢分子解离来影响氢气的催化作用. 氢气在非平衡等离子体中显示的催化作用有可能为开辟新的化学合成途径提供重要机遇.

English

    1. [1] Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218[1] Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218

    2. [2] Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117[2] Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117

    3. [3] Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530[3] Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530

    4. [4] Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035[4] Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035

    5. [5] Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217[5] Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217

    6. [6] Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106[6] Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106

    7. [7] Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450[7] Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450

    8. [8] Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459[8] Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459

    9. [9] Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48[9] Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48

    10. [10] Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466[10] Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466

    11. [11] Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192[11] Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192

    12. [12] Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009[12] Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009

    13. [13] Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209[13] Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209

    14. [14] Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698[14] Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698

    15. [15] Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637[15] Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637

    16. [16] Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039[16] Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039

    17. [17] Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145[17] Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145

    18. [18] Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989[18] Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989

    19. [19] Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744[19] Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744

    20. [20] Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71[20] Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71

    21. [21] Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1[21] Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1

    22. [22] Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1[22] Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1

    23. [23] Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701[23] Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701

    24. [24] Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588[24] Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588

    25. [25] Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893[25] Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893

    26. [26] Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460[26] Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460

    27. [27] Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1[27] Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1

  • 加载中
计量
  • PDF下载量:  219
  • 文章访问数:  558
  • HTML全文浏览量:  31
文章相关
  • 发布日期:  2015-03-20
  • 收稿日期:  2014-08-17
  • 网络出版日期:  2014-10-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章