五氧化二钽纳米柱的水热合成和光催化性能

李菊霞 戴卫理 闫俊青 武光军 李兰冬 关乃佳

引用本文: 李菊霞, 戴卫理, 闫俊青, 武光军, 李兰冬, 关乃佳. 五氧化二钽纳米柱的水热合成和光催化性能[J]. 催化学报, 2015, 36(3): 432-438. doi: 10.1016/S1872-2067(14)60215-1 shu
Citation:  Juxia Li, Weili Dai, Junqing Yan, Guangjun Wu, Landong Li, Naijia Guan. Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods[J]. Chinese Journal of Catalysis, 2015, 36(3): 432-438. doi: 10.1016/S1872-2067(14)60215-1 shu

五氧化二钽纳米柱的水热合成和光催化性能

    通讯作者: 戴卫理, 关乃佳; 戴卫理, 关乃佳
  • 基金项目:

    天津化学化工协同创新中心. 

摘要: 以聚乙烯醇(PEG)为结构导向剂, 利用水热法合成了形貌可控的Ta2O5纳米柱.采用X射线衍射、扫描电镜、透射电镜、漫反射紫外-可见光谱和光致发光光谱对所制备样品进行了表征.考察了结晶时间和Ta2O5/Sr(OH)2摩尔比等合成参数对样品形貌的影响, 并在此基础上对Ta2O5纳米粒可能的生长机理进行了推测.结果表明, 在PEG和Sr(OH)2存在条件下可以合成形貌可控的Ta2O5纳米柱.研究了紫外光下Ta2O5纳米柱降解罗丹明B的光催化性能, 发现Ta2O5的形貌对光催化性能有很大影响, Ta2O5纳米柱的光催化性能与其长度和直径比成线性关系.催化降解反应的表观速率常数最高可达0.156 min-1, 且经多次循环使用后, 样品仍然保持较高的催化性能.

English

    1. [1] Li X, Zang J L. J Phys Chem C, 2009, 113: 19411[1] Li X, Zang J L. J Phys Chem C, 2009, 113: 19411

    2. [2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem Rev, 1995, 95: 69[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem Rev, 1995, 95: 69

    3. [3] Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243[3] Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243

    4. [4] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295[4] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    5. [5] Chueh Y L, Chou L J, Wang Z L. Angew Chem Int Ed, 2006, 45: 7773[5] Chueh Y L, Chou L J, Wang Z L. Angew Chem Int Ed, 2006, 45: 7773

    6. [6] Zhang J Y, Bie L J, Dusastre V, Boyd I W. Thin Solid Films, 1998, 318: 252[6] Zhang J Y, Bie L J, Dusastre V, Boyd I W. Thin Solid Films, 1998, 318: 252

    7. [7] Ezhilvalavan S, Tseng T Y. J Mater Sci Mater Electron, 1999, 10: 9[7] Ezhilvalavan S, Tseng T Y. J Mater Sci Mater Electron, 1999, 10: 9

    8. [8] Zhu Y F, Yu F, Man Y, Tian Q Y, He Y, Wu N Z. J Solid State Chem, 2005, 178: 224[8] Zhu Y F, Yu F, Man Y, Tian Q Y, He Y, Wu N Z. J Solid State Chem, 2005, 178: 224

    9. [9] Li P, Stender C L, Ringe E, Marks L D, Odom T W. Small, 2010, 6: 1096[9] Li P, Stender C L, Ringe E, Marks L D, Odom T W. Small, 2010, 6: 1096

    10. [10] Wang Y, Cui Z L, Zhang Z K. Mater Lett, 2004, 58: 3017[10] Wang Y, Cui Z L, Zhang Z K. Mater Lett, 2004, 58: 3017

    11. [11] Pyatenko A, Yamaguchi M, Suzuki M. J Phys Chem C, 2007, 111: 7910[11] Pyatenko A, Yamaguchi M, Suzuki M. J Phys Chem C, 2007, 111: 7910

    12. [12] Jia C J, Sun L D, You L P, Jiang X C, Luo F, Pang Y C, Yan C H. J Phys Chem B, 2005, 109: 3284[12] Jia C J, Sun L D, You L P, Jiang X C, Luo F, Pang Y C, Yan C H. J Phys Chem B, 2005, 109: 3284

    13. [13] Chen D H, Huang F Z, Cheng Y B, Caruso R A. Adv Mater, 2009, 21: 2206[13] Chen D H, Huang F Z, Cheng Y B, Caruso R A. Adv Mater, 2009, 21: 2206

    14. [14] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59[14] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59

    15. [15] Morales A M, Lieber C M. Science, 1998, 279: 208[15] Morales A M, Lieber C M. Science, 1998, 279: 208

    16. [16] Manna L, Scher E C, Alivisatos A P. J Am Chem Soc, 2000, 122: 12700[16] Manna L, Scher E C, Alivisatos A P. J Am Chem Soc, 2000, 122: 12700

    17. [17] Holmes J D, Johnston K P, Doty R C, Korgel B A. Science, 2000, 287: 1471[17] Holmes J D, Johnston K P, Doty R C, Korgel B A. Science, 2000, 287: 1471

    18. [18] Gudiksen M S, Lieber C M. J Am Chem Soc, 2000, 122: 8801[18] Gudiksen M S, Lieber C M. J Am Chem Soc, 2000, 122: 8801

    19. [19] Park S J, Kim S, Lee S, Khim Z G, Char K, Hyeon T. J Am Chem Soc, 2000, 122: 8581[19] Park S J, Kim S, Lee S, Khim Z G, Char K, Hyeon T. J Am Chem Soc, 2000, 122: 8581

    20. [20] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291: 2115[20] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291: 2115

    21. [21] Thurn-Albrecht T, Schotter J, Kästle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Russell T P. Science, 2000, 290: 2126[21] Thurn-Albrecht T, Schotter J, Kästle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Russell T P. Science, 2000, 290: 2126

    22. [22] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Adv Mater, 2001, 13: 113[22] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D. Adv Mater, 2001, 13: 113

    23. [23] Lei Y, Zhang L D, Fan J C. Chem Phys Lett, 2001, 338: 231[23] Lei Y, Zhang L D, Fan J C. Chem Phys Lett, 2001, 338: 231

    24. [24] Urban J J, Yun W S, Gu Q, Park H. J Am Chem Soc, 2002, 124: 1186[24] Urban J J, Yun W S, Gu Q, Park H. J Am Chem Soc, 2002, 124: 1186

    25. [25] Ndiege N, Wilhoite T, Subramanian V, Shannon M A, Masel R I. Chem Mater, 2007, 19: 3155[25] Ndiege N, Wilhoite T, Subramanian V, Shannon M A, Masel R I. Chem Mater, 2007, 19: 3155

    26. [26] Baruwati B, Varma R S. Cryst Growth Des, 2010, 10: 3424[26] Baruwati B, Varma R S. Cryst Growth Des, 2010, 10: 3424

    27. [27] Lü X J, Ding S J, Lin T Q, Mou X L, Hong Z L, Huang F Q. Dalton Trans, 2012, 41: 622[27] Lü X J, Ding S J, Lin T Q, Mou X L, Hong Z L, Huang F Q. Dalton Trans, 2012, 41: 622

    28. [28] Duan J Y, Shi W D, Xu L L, Mou G Y, Xin Q L, Guan J G. Chem Commun, 2012, 48: 7301[28] Duan J Y, Shi W D, Xu L L, Mou G Y, Xin Q L, Guan J G. Chem Commun, 2012, 48: 7301

    29. [29] Gömpel D, Tahir M N, Panthöfer M, Mugnaioli E, Brandscheid R, Kolb U, Tremel W. J Mater Chem A, 2014, 2: 8033[29] Gömpel D, Tahir M N, Panthöfer M, Mugnaioli E, Brandscheid R, Kolb U, Tremel W. J Mater Chem A, 2014, 2: 8033

    30. [30] Kominami H, Miyakawa M, Murakami S, Yasuda T, Kohno M, Onoue S, Kera Y, Ohtani B. Phys Chem Chem Phys, 2001, 3: 2697[30] Kominami H, Miyakawa M, Murakami S, Yasuda T, Kohno M, Onoue S, Kera Y, Ohtani B. Phys Chem Chem Phys, 2001, 3: 2697

    31. [31] Buha J, Arcon D, Niederberger M, Djerdj I. Phys Chem Chem Phys, 2010, 12: 15537[31] Buha J, Arcon D, Niederberger M, Djerdj I. Phys Chem Chem Phys, 2010, 12: 15537

    32. [32] Devan R S, Ho W D, Lin J H, Wu S Y, Ma Y R, Lee P C, Liou Y. Cryst Growth Des, 2008, 8: 4465[32] Devan R S, Ho W D, Lin J H, Wu S Y, Ma Y R, Lee P C, Liou Y. Cryst Growth Des, 2008, 8: 4465

    33. [33] Oh M H, Lee N, Kim H, Park S P, Piao Y Z, Lee J, Jun S W, Moon W K, Choi S H, Hyeon T. J Am Chem Soc, 2011, 133: 5508[33] Oh M H, Lee N, Kim H, Park S P, Piao Y Z, Lee J, Jun S W, Moon W K, Choi S H, Hyeon T. J Am Chem Soc, 2011, 133: 5508

    34. [34] Bonitatibus P J Jr, Torres A S, Goddard G D, Fitzgerald P F, Kulkarni A M. Chem Commun, 2010, 46: 8956[34] Bonitatibus P J Jr, Torres A S, Goddard G D, Fitzgerald P F, Kulkarni A M. Chem Commun, 2010, 46: 8956

    35. [35] Yu S H, Liu B, Mo M S, Huang J H, Liu X M, Qian Y T. Adv Funct Mater, 2003, 13: 639[35] Yu S H, Liu B, Mo M S, Huang J H, Liu X M, Qian Y T. Adv Funct Mater, 2003, 13: 639

    36. [36] Hu Y M, Gu H S, Hu Z L, Di W N, Yuan Y, You J, Cao W Q, Wang Y, Chan H L W. Cryst Growth Des, 2008, 8: 832[36] Hu Y M, Gu H S, Hu Z L, Di W N, Yuan Y, You J, Cao W Q, Wang Y, Chan H L W. Cryst Growth Des, 2008, 8: 832

    37. [37] Xu T G, Zhao X, Zhu Y F. J Phys Chem B, 2006, 110: 25825[37] Xu T G, Zhao X, Zhu Y F. J Phys Chem B, 2006, 110: 25825

    38. [38] Zhou C, Chen G, Li Y X, Zhang H J, Pei J. Int J Hydrogen Energy, 2009, 34: 2113[38] Zhou C, Chen G, Li Y X, Zhang H J, Pei J. Int J Hydrogen Energy, 2009, 34: 2113

    39. [39] Liu J W, Chen G, Li Z H, Zhang Z G. Int J Hydrogen Energy, 2007, 32: 2269[39] Liu J W, Chen G, Li Z H, Zhang Z G. Int J Hydrogen Energy, 2007, 32: 2269

    40. [40] Li Y X, Chen S, He H Q, Zhang Y, Wang C Y. ACS Appl Mater Interfaces, 2013, 5: 10260[40] Li Y X, Chen S, He H Q, Zhang Y, Wang C Y. ACS Appl Mater Interfaces, 2013, 5: 10260

    41. [41] Bîrdeanu M, Bîrdeanu A V, Gruia A S, Fagadar-Cosma E, Avram C N. J Alloys Compd, 2013, 573: 53[41] Bîrdeanu M, Bîrdeanu A V, Gruia A S, Fagadar-Cosma E, Avram C N. J Alloys Compd, 2013, 573: 53

    42. [42] Zhuravleva E Y. Inorg Mater, 2004, 40: 671[42] Zhuravleva E Y. Inorg Mater, 2004, 40: 671

    43. [43] Li Z S, Yu T, Zou Z G, Ye J H. Appl Phys Lett, 2006, 88: 071917[43] Li Z S, Yu T, Zou Z G, Ye J H. Appl Phys Lett, 2006, 88: 071917

    44. [44] Maeda K, Domen K. J Phys Chem C, 2007, 111: 7851[44] Maeda K, Domen K. J Phys Chem C, 2007, 111: 7851

    45. [45] Liu X M, Zhou Y C. J Cryst Growth, 2004, 270: 527[45] Liu X M, Zhou Y C. J Cryst Growth, 2004, 270: 527

    46. [46] Zhang D S, Fu H X, Shi L Y, Pan C S, Li Q, Chu Y L, Yu W J. Inorg Chem, 2007, 46: 2446[46] Zhang D S, Fu H X, Shi L Y, Pan C S, Li Q, Chu Y L, Yu W J. Inorg Chem, 2007, 46: 2446

    47. [47] Kim S, Choi W. J Phys Chem B, 2005, 109: 5143[47] Kim S, Choi W. J Phys Chem B, 2005, 109: 5143

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  420
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2015-03-20
  • 收稿日期:  2014-07-24
  • 网络出版日期:  2014-08-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章