Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye

Sharifah Bee Abd Hamid Tong Ling Tan Chin Wei Lai Emy Marlina Samsudin

引用本文: Sharifah Bee Abd Hamid, Tong Ling Tan, Chin Wei Lai, Emy Marlina Samsudin. Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye[J]. 催化学报, 2014, 35(12): 2014-2019. doi: 10.1016/S1872-2067(14)60210-2 shu
Citation:  Sharifah Bee Abd Hamid, Tong Ling Tan, Chin Wei Lai, Emy Marlina Samsudin. Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye[J]. Chinese Journal of Catalysis, 2014, 35(12): 2014-2019. doi: 10.1016/S1872-2067(14)60210-2 shu

Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye

    通讯作者: Sharifah Bee Abd Hamid
摘要: A nanocomposite UV-visible light-responsive multiwalled carbon nanotube (MWCNT)/titanium dioxide (TiO2) nanophotocatalyst was successfully synthesized by a modified sol-gel method using titanium isopropoxide and functionalized MWCNTs as the starting precursors. The photocatalytic activity of the TiO2 and the nanohybrid material was investigated through the photodegradation of Reactive Black 5 dye under ultraviolet light irradiation. X-ray diffraction analysis indicated that anatase phase was obtained for both the pure TiO2 and the MWCNT/TiO2 composite, while Raman spectroscopy confirmed the presence of MWCNTs in the composite. Field emission scanning electron microscopy revealed that TiO2 nanoparticles with an individual diameter of about 10-20 nm were coated on the surface of the MWCNTs. The specific surface areas of the samples were found to be 80 and 181 m2/g for the pure TiO2 and MWCNT/TiO2, respectively. As a result, MWCNT/TiO2 showed better photocatalytic performance than pure TiO2 because the high surface area of MWCNTs enabled them to function as good electron acceptors for the retardation of electron-hole pair recombination.

English

    1. [1] Chen M L, Oh W C. Int J Photoenergy, 2010, 2010: Article ID 264831[1] Chen M L, Oh W C. Int J Photoenergy, 2010, 2010: Article ID 264831

    2. [2] Teh C M, Mohamed A R. J Alloy Compd, 2011, 509: 1648[2] Teh C M, Mohamed A R. J Alloy Compd, 2011, 509: 1648

    3. [3] Chen Y F, Lee C Y, Yeng M Y, Chiu H T. J Cryst Growth, 2003, 247: 363[3] Chen Y F, Lee C Y, Yeng M Y, Chiu H T. J Cryst Growth, 2003, 247: 363

    4. [4] Gupta S M, Tripathi M. Chin Sci Bull, 2011, 56: 1639[4] Gupta S M, Tripathi M. Chin Sci Bull, 2011, 56: 1639

    5. [5] Jiang G H, Zheng X Y, Wang Y, Li T W, Sun X K. Powder Technol, 2011, 207: 465[5] Jiang G H, Zheng X Y, Wang Y, Li T W, Sun X K. Powder Technol, 2011, 207: 465

    6. [6] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331[6] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    7. [7] Ashkarran A A, Fakhari M, Mahmoudi M. RSC Adv, 2013, 3: 18529[7] Ashkarran A A, Fakhari M, Mahmoudi M. RSC Adv, 2013, 3: 18529

    8. [8] Tseng T K, Lin Y S, Chen Y J, Chu H. Int J Mol Sci, 2010, 11: 2336[8] Tseng T K, Lin Y S, Chen Y J, Chu H. Int J Mol Sci, 2010, 11: 2336

    9. [9] Luo Y S, Liu J P, Xia X H, Li X Q, Fang T, Li S Q, Ren Q F, Li J L, Jia Z J. Mater Lett, 2007, 61: 2467[9] Luo Y S, Liu J P, Xia X H, Li X Q, Fang T, Li S Q, Ren Q F, Li J L, Jia Z J. Mater Lett, 2007, 61: 2467

    10. [10] Tseng Y H, Yen C Y, Yen M Y, Ma C C M. Micro Nano Lett, 2010, 5: 1[10] Tseng Y H, Yen C Y, Yen M Y, Ma C C M. Micro Nano Lett, 2010, 5: 1

    11. [11] Gao B, Peng C, Chen G Z, Puma G L. Appl Catal B, 2008, 85: 17[11] Gao B, Peng C, Chen G Z, Puma G L. Appl Catal B, 2008, 85: 17

    12. [12] Moraes F C, Cabral M F, Mascaro L H, Machado S A S. Surf Sci, 2011, 605: 435[12] Moraes F C, Cabral M F, Mascaro L H, Machado S A S. Surf Sci, 2011, 605: 435

    13. [13] Wu C H, Kuo C Y, Chen S T. Environ Technol, 2013, 34: 2513[13] Wu C H, Kuo C Y, Chen S T. Environ Technol, 2013, 34: 2513

    14. [14] Wang H, Wang H L, Jiang W F, Li Z Q. Water Res, 2009, 43: 204[14] Wang H, Wang H L, Jiang W F, Li Z Q. Water Res, 2009, 43: 204

    15. [15] Xie Y, Heo S H, Yoo S H, Ali G, Cho S O. Nanoscale Res Lett, 2010, 5: 603[15] Xie Y, Heo S H, Yoo S H, Ali G, Cho S O. Nanoscale Res Lett, 2010, 5: 603

    16. [16] Leary R, Westwood A. Carbon, 2011, 49: 741[16] Leary R, Westwood A. Carbon, 2011, 49: 741

    17. [17] Abdel Salam M. Arabian J Chem, 2012, 5: 291[17] Abdel Salam M. Arabian J Chem, 2012, 5: 291

    18. [18] Liu B, Zeng H C. Chem Mater, 2008, 20: 2711[18] Liu B, Zeng H C. Chem Mater, 2008, 20: 2711

    19. [19] Yan X B, Tay B K, Yang Y. J Phys Chem B, 2006, 110: 25844[19] Yan X B, Tay B K, Yang Y. J Phys Chem B, 2006, 110: 25844

    20. [20] Zhang F J, Liu J, Chen M L, Oh W C. J Korean Ceram Soc, 2009, 46: 263[20] Zhang F J, Liu J, Chen M L, Oh W C. J Korean Ceram Soc, 2009, 46: 263

    21. [21] Aazam E S. Ceram Int, 2014, 40: 6705[21] Aazam E S. Ceram Int, 2014, 40: 6705

    22. [22] An H, Cui H, Zhao D D, Tao D J, Li B J, Zhai J P, Li Q. Electrochim Acta, 2013, 92: 176[22] An H, Cui H, Zhao D D, Tao D J, Li B J, Zhai J P, Li Q. Electrochim Acta, 2013, 92: 176

    23. [23] An Y, Yang L, Hou J, Liu Z Y, Peng B H. Opt Mater, 2014, 36: 1390[23] An Y, Yang L, Hou J, Liu Z Y, Peng B H. Opt Mater, 2014, 36: 1390

    24. [24] Da Dalt S, Alves A K, Bergmann C P. Mater Res Bull, 2013, 48: 1845[24] Da Dalt S, Alves A K, Bergmann C P. Mater Res Bull, 2013, 48: 1845

    25. [25] de Morais A, Loiola L M D, Benedetti J E, Gonçalves A S, Avellaneda C A O, Clerici J H, Cotta M A, Nogueira A F. J Photochem Photobiol A, 2013, 251: 78[25] de Morais A, Loiola L M D, Benedetti J E, Gonçalves A S, Avellaneda C A O, Clerici J H, Cotta M A, Nogueira A F. J Photochem Photobiol A, 2013, 251: 78

    26. [26] Djokic V R, Marinkovic A D, Ersen O, Uskokovic P S, Petrovic R D, Radmilovic V R, Janackovic D T. Ceram Int, 2014, 40: 4009[26] Djokic V R, Marinkovic A D, Ersen O, Uskokovic P S, Petrovic R D, Radmilovic V R, Janackovic D T. Ceram Int, 2014, 40: 4009

    27. [27] Gui M M, Chai S P, Xu B Q, Mohamed A R. Sol Energy Mater Sol Cells, 2014, 122: 183[27] Gui M M, Chai S P, Xu B Q, Mohamed A R. Sol Energy Mater Sol Cells, 2014, 122: 183

    28. [28] Liu H, Zhang H R, Yang H W. Chin J Catal (刘浩, 张海茹, 杨宏旻. 催化学报), 2014, 35: 66[28] Liu H, Zhang H R, Yang H W. Chin J Catal (刘浩, 张海茹, 杨宏旻. 催化学报), 2014, 35: 66

    29. [29] Haji Jumali M H, Mohamad Alosfur F K, Radiman S, Ridha N J, Yarmo M A, Umar A A. Mater Sci Semicond Process, 2014, 25: 207[29] Haji Jumali M H, Mohamad Alosfur F K, Radiman S, Ridha N J, Yarmo M A, Umar A A. Mater Sci Semicond Process, 2014, 25: 207

    30. [30] Tan L L, Ong W J, Chai S P, Mohamed A R. Nanoscale Res Lett, 2013, 8: 465[30] Tan L L, Ong W J, Chai S P, Mohamed A R. Nanoscale Res Lett, 2013, 8: 465

    31. [31] Zhu L, Meng Z D, Oh W C. J Nanomater, 2012, 2012: Article ID 586526[31] Zhu L, Meng Z D, Oh W C. J Nanomater, 2012, 2012: Article ID 586526

    32. [32] Hintsho N, Petrik L, Nechaev A, Titinchi S, Ndungu P. Appl Catal B, 2014, 156-157: 273[32] Hintsho N, Petrik L, Nechaev A, Titinchi S, Ndungu P. Appl Catal B, 2014, 156-157: 273

    33. [33] Liu C W, Chen H B, Dai K, Xue A F, Chen H, Huang Q Y. Mater Res Bull, 2013, 48: 1499[33] Liu C W, Chen H B, Dai K, Xue A F, Chen H, Huang Q Y. Mater Res Bull, 2013, 48: 1499

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  389
  • HTML全文浏览量:  39
文章相关
  • 收稿日期:  2014-06-11
  • 网络出版日期:  2014-08-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章